244 research outputs found

    Testing Lorentz Invariance by Comparing Light Propagation in Vacuum and Matter

    Full text link
    We present a Michelson-Morley type experiment for testing the isotropy of the speed of light in vacuum and matter. The experiment compares the resonance frequency of a monolithic optical sapphire resonator with the resonance frequency of an orthogonal evacuated optical cavity made of fused silica while the whole setup is rotated on an air bearing turntable once every 45 s. Preliminary results yield an upper limit for the anisotropy of the speed of light in matter (sapphire) of \Delta c/c < 4x10^(-15), limited by the frequency stability of the sapphire resonator operated at room temperature. Work to increase the measurement sensitivity by more than one order of magnitude by cooling down the sapphire resonator to liquid helium temperatures (LHe) is currently under way.Comment: Presented at the Fifth Meeting on CPT and Lorentz Symmetry, Bloomington, Indiana, June 28-July 2, 201

    Comparison of Experimental and Theoretical Structure Amplitudes and Valence Charge Densities of GaAs

    Full text link

    Duality in interacting particle systems and boson representation

    Full text link
    In the context of Markov processes, we show a new scheme to derive dual processes and a duality function based on a boson representation. This scheme is applicable to a case in which a generator is expressed by boson creation and annihilation operators. For some stochastic processes, duality relations have been known, which connect continuous time Markov processes with discrete state space and those with continuous state space. We clarify that using a generating function approach and the Doi-Peliti method, a birth-death process (or discrete random walk model) is naturally connected to a differential equation with continuous variables, which would be interpreted as a dual Markov process. The key point in the derivation is to use bosonic coherent states as a bra state, instead of a conventional projection state. As examples, we apply the scheme to a simple birth-coagulation process and a Brownian momentum process. The generator of the Brownian momentum process is written by elements of the SU(1,1) algebra, and using a boson realization of SU(1,1) we show that the same scheme is available.Comment: 13 page

    Methodological considerations in the analysis of fecal glucocorticoid metabolites in tufted capuchins (Cebus apella)

    Get PDF
    Analysis of fecal glucocorticoid (GC) metabolites has recently become the standard method to monitor adrenocortical activity in primates noninvasively. However, given variation in the production, metabolism, and excretion of GCs across species and even between sexes, there are no standard methods that are universally applicable. In particular, it is important to validate assays intended to measure GC production, test extraction and storage procedures, and consider the time course of GC metabolite excretion relative to the production and circulation of the native hormones. This study examines these four methodological aspects of fecal GC metabolite analysis in tufted capuchins (Cebus apella). Specifically, we conducted an adrenocorticotrophic hormone (ACTH) challenge on one male and one female capuchin to test the validity of four GC enzyme immunoassays (EIAs) and document the time course characterizing GC me- tabolite excretion in this species. In addition, we compare a common field-friendly technique for extracting fecal GC metabolites to an established laboratory extraction methodology and test for effects of storing “field extracts” for up to 1 yr. Results suggest that a corticosterone EIA is most sensitive to changes in GC production, provides reliable measures when extracted according to the field method, and measures GC metabolites which remain highly stable after even 12 mo of storage. Further, the time course of GC metabolite excretion is shorter than that described yet for any primate taxa. These results provide guidelines for studies of GCs in tufted capuchins, and underscore the importance of validating methods for fecal hormone analysis for each species of interest

    Analytical in vitro approach for studying cyto- and genotoxic effects of particulate airborne material

    Get PDF
    In the field of inhalation toxicology, progress in the development of in vitro methods and efficient exposure strategies now offers the implementation of cellular-based systems. These can be used to analyze the hazardous potency of airborne substances like gases, particles, and complex mixtures (combustion products). In addition, the regulatory authorities require the integration of such approaches to reduce or replace animal experiments. Although the animal experiment currently still has to provide the last proof of the toxicological potency and classification of a certain compound, in vitro testing is gaining more and more importance in toxicological considerations. This paper gives a brief characterization of the CULTEX® Radial Flow System exposure device, which allows the exposure of cultivated cells as well as bacteria under reproducible and stable conditions for studying cellular and genotoxic effects after the exposure at the air–liquid or air–agar interface, respectively. A commercial bronchial epithelial cell line (16HBE14o-) as well as Salmonella typhimurium tester strains were exposed to smoke of different research and commercial available cigarettes. A dose-dependent reduction of cell viability was found in the case of 16HBE14o- cells; S. typhimurium responded with a dose-dependent induction of revertants. The promising results recommend the integration of cellular studies in the field of inhalation toxicology and their regulatory acceptance by advancing appropriate validation studies

    Stochastic Duality and Orthogonal Polynomials

    Get PDF
    For a series of Markov processes we prove stochastic duality relations with duality functions given by orthogonal polynomials. This means that expectations with respect to the original process (which evolves the variable of the orthogonal polynomial) can be studied via expectations with respect to the dual process (which evolves the index of the polynomial). The set of processes include interacting particle systems, such as the exclusion process, the inclusion process and independent random walkers, as well as interacting diffusions and redistribution models of Kipnis–Marchioro–Presutti type. Duality functions are given in terms of classical orthogonal polynomials, both of discrete and continuous variable, and the measure in the orthogonality relation coincides with the process stationary measure

    Cytokine-Based Log-Scale Expansion of Functional Murine Dendritic Cells

    Get PDF
    BACKGROUND: Limitations of the clinical efficacy of dendritic cell (DC)-based immunotherapy, as well as difficulties in their industrial production, are largely related to the limited number of autologous DCs from each patient. We here established a possible breakthrough, a simple and cytokine-based culture method to realize a log-scale order of functional murine DCs (>1,000-fold), which cells were used as a model before moving to human studies. METHODOLOGY/PRINCIPAL FINDINGS: Floating cultivation of lineage-negative hematopoietic progenitors from bone marrow in an optimized cytokine cocktail (FLT3-L, IL-3, IL-6, and SCF) led to a stable log-scale proliferation of these cells, and a subsequent differentiation study using IL-4/GM-CSF revealed that 3-weeks of expansion was optimal to produce CD11b+/CD11c+ DC-like cells. The expanded DCs had typical features of conventional myeloid DCs in vitro and in vivo, including identical efficacy as tumor vaccines. CONCLUSIONS/SIGNIFICANCE: The concept of DC expansion should make a significant contribution to the progress of DC-based immunotherapy
    corecore