311 research outputs found

    Efimov trimers under strong confinement

    Full text link
    The dimensionality of a system can fundamentally impact the behaviour of interacting quantum particles. Classic examples range from the fractional quantum Hall effect to high temperature superconductivity. As a general rule, one expects confinement to favour the binding of particles. However, attractively interacting bosons apparently defy this expectation: while three identical bosons in three dimensions can support an infinite tower of Efimov trimers, only two universal trimers exist in the two dimensional case. We reveal how these two limits are connected by investigating the problem of three identical bosons confined by a harmonic potential along one direction. We show that the confinement breaks the discrete Efimov scaling symmetry and destroys the weakest bound trimers. However, the deepest bound Efimov trimer persists under strong confinement and hybridizes with the quasi-two-dimensional trimers, yielding a superposition of trimer configurations that effectively involves tunnelling through a short-range repulsive barrier. Our results suggest a way to use strong confinement to engineer more stable Efimov-like trimers, which have so far proved elusive.Comment: 8 pages, 4 figures. Typos corrected, published versio

    Microscopic description of exciton-polaritons in microcavities

    Full text link
    We investigate the microscopic description of exciton-polaritons that involves electrons, holes and photons within a two-dimensional microcavity. We show that in order to recover the simplified exciton-photon model that is typically used to describe polaritons, one must correctly define the exciton-photon detuning and exciton-photon (Rabi) coupling in terms of the bare microscopic parameters. For the case of unscreened Coulomb interactions, we find that the exciton-photon detuning is strongly shifted from its bare value in a manner akin to renormalization in quantum electrodynamics. Within the renormalized theory, we exactly solve the problem of a single exciton-polariton for the first time and obtain the full spectral response of the microcavity. In particular, we find that the electron-hole wave function of the polariton can be significantly modified by the very strong Rabi couplings achieved in current experiments. Our microscopic approach furthermore allows us to properly determine the effective interaction between identical polaritons, which goes beyond previous theoretical work. Our findings are thus important for understanding and characterizing exciton-polariton systems across the whole range of polariton densities.Comment: 14 pages, 5 figure

    Three-body problem in a two-dimensional Fermi gas

    Full text link
    We investigate the three-body properties of two identical "up" fermions and one distinguishable "down" atom interacting in a strongly confined two-dimensional geometry. We compute exactly the atom-dimer scattering properties and the three-body recombination rate as a function of collision energy and mass ratio m_up/m_down. We find that the recombination rate for fermions is strongly energy dependent, with significant contributions from higher partial waves at low energies. For m_up < m_down, the s-wave atom-dimer scattering below threshold is completely described by the scattering length. Furthermore, we examine the "up-up-down" bound states (trimers) appearing at large m_up/m_down and find that the energy spectrum for the deepest bound trimers resembles that of a hydrogen atom confined to two dimensions.Comment: 6 pages, 6 figure

    Universality of an impurity in a Bose-Einstein condensate

    Full text link
    Universality is a powerful concept in physics, allowing one to construct physical descriptions of systems that are independent of the precise microscopic details or energy scales. A prime example is the Fermi gas with unitarity limited interactions, whose universal properties are relevant to systems ranging from atomic gases at microkelvin temperatures to the inner crust of neutron stars. Here we address the question of whether unitary Bose systems can possess a similar universality. We consider the simplest strongly interacting Bose system, where we have an impurity particle ("polaron") resonantly interacting with a Bose-Einstein condensate (BEC). Focusing on the ground state of the equal-mass system, we use a variational wave function for the polaron that includes up to three Bogoliubov excitations of the BEC, thus allowing us to capture both Efimov trimers and associated tetramers. Unlike the Fermi case, we find that the length scale associated with Efimov trimers (i.e., the three-body parameter) can strongly affect the polaron's behaviour, even at boson densities where there are no well-defined Efimov states. However, by comparing our results with recent quantum Monte Carlo calculations, we argue that the polaron energy is a \emph{universal} function of the Efimov three-body parameter for sufficiently low boson densities. We further support this conclusion by showing that the energies of the deepest bound Efimov trimers and tetramers at unitarity are universally related to one another, regardless of the microscopic model. On the other hand, we find that the quasiparticle residue and effective mass sensitively depend on the coherence length ξ\xi of the BEC, with the residue tending to zero as ξ\xi diverges, in a manner akin to the orthogonality catastrophe.Comment: 11 pages and 7 figures + supplemental materia

    Strong-coupling ansatz for the one-dimensional Fermi gas in a harmonic potential

    Get PDF
    A major challenge in modern physics is to accurately describe strongly interacting quantum many-body systems. One-dimensional systems provide fundamental insights since they are often amenable to exact methods. However, no exact solution is known for the experimentally relevant case of external confinement. Here, we propose a powerful ansatz for the one-dimensional Fermi gas in a harmonic potential near the limit of infinite short-range repulsion. For the case of a single impurity in a Fermi sea, we show that our ansatz is indistinguishable from numerically exact results in both the few- and many-body limits. We furthermore derive an effective Heisenberg spin-chain model corresponding to our ansatz, valid for any spin-mixture, within which we obtain the impurity eigenstates analytically. In particular, the classical Pascal's triangle emerges in the expression for the ground-state wavefunction. As well as providing an important benchmark for strongly correlated physics, our results are relevant for emerging quantum technologies, where a precise knowledge of one-dimensional quantum states is paramount.Comment: 13 pages, 6 figures. Published versio
    • …
    corecore