184 research outputs found

    The Value Proposition for Pathologists: A Population Health Approach

    Get PDF
    © The Author(s) 2020. The transition to a value-based payment system offers pathologists the opportunity to play an increased role in population health by improving outcomes and safety as well as reducing costs. Although laboratory testing itself accounts for a small portion of health-care spending, laboratory data have significant downstream effects in patient management as well as diagnosis. Pathologists currently are heavily engaged in precision medicine, use of laboratory and pathology test results (including autopsy data) to reduce diagnostic errors, and play leading roles in diagnostic management teams. Additionally, pathologists can use aggregate laboratory data to monitor the health of populations and improve health-care outcomes for both individual patients and populations. For the profession to thrive, pathologists will need to focus on extending their roles outside the laboratory beyond the traditional role in the analytic phase of testing. This should include leadership in ensuring correct ordering and interpretation of laboratory testing and leadership in population health programs. Pathologists in training will need to learn key concepts in informatics and data analytics, health-care economics, public health, implementation science, and health systems science. While these changes may reduce reimbursement for the traditional activities of pathologists, new opportunities arise for value creation and new compensation models. This report reviews these opportunities for pathologist leadership in utilization management, precision medicine, reducing diagnostic errors, and improving health-care outcomes

    Experimental Assessment of the Role of Acetaldehyde in Alcoholic Cardiomyopathy

    Get PDF
    Alcoholism is one of the major causes of non-ischemic heart damage. The myopathic state of the heart due to alcohol consumption, namely alcoholic cardiomyopathy, is manifested by cardiac hypertrophy, compromised ventricular contractility and cardiac output. Several mechanisms have been postulated for alcoholic cardiomyopathy including oxidative damage, accumulation of triglycerides, altered fatty acid extraction, decreased myofilament Ca(2+ )sensitivity, and impaired protein synthesis. Despite intensive efforts to unveil the mechanism and ultimate toxin responsible for alcohol-induced cardiac toxicity, neither has been clarified thus far. Primary candidates for the specific toxins are ethanol, its first and major metabolic product - acetaldehyde (ACA) and fatty acid ethyl esters. Evidence from our lab suggests that ACA directly impairs cardiac function and promotes lipid peroxidation resulting in oxidative damage. The ACA-induced cardiac contractile depression may be reconciled with inhibitors of Cytochrome P-450 oxidase, xanthine oxidase and lipid peroxidation Unfortunately, the common methods to investigate the toxicity of ACA have been hampered by the fact that direct intake of ACA is toxic and unsuitable for chronic study, which is unable to provide direct evidence of direct cardiac toxicity for ACA. In order to overcome this obstacle associated with the chemical properties of ACA, our laboratory has used the chronic ethanol feeding model in transgenic mice with cardiac over-expression of alcohol dehydrogenase (ADH) and an in vitro ventricular myocyte culture model. The combination of both in vivo and in vitro approaches allows us to evaluate the role of ACA in ethanol-induced cardiac toxicity and certain cellular signaling pathways leading to alcoholic cardiomyopathy

    Regulation of intracellular free arachidonic acid in Aplysia nervous system

    Full text link
    We have studied the regulation of arachidonic acid (AA) uptake, metabolism, and release in Aplysia nervous system. Following uptake of [ 3 H]AA, the distribution of radioactivity in intracellular and extracellular lipid pools was measured as a function of time in the presence or absence of exogenous AA. The greatest amount of AA was esterified into phosphatidylinositol (relative to pool size). We found that the intracellular free AA pool underwent rapid turnover, and that radioactive free AA and eicosanoids were released at a rapid rate into the extracellular medium, both in the presence and absence of exogenous AA. Most of the released radioactivity originated from phosphatidylinositol.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/48020/1/232_2005_Article_BF01868464.pd

    Global Experiences on Wastewater Irrigation: Challenges and Prospects

    Get PDF

    We Can Do It Together: PAR1/PAR2 Heterodimer Signaling in VSMCs

    No full text
    corecore