810 research outputs found

    Reconfigurable quadruple quantum dots in a silicon nanowire transistor

    Full text link
    We present a novel reconfigurable metal-oxide-semiconductor multi-gate transistor that can host a quadruple quantum dot in silicon. The device consist of an industrial quadruple-gate silicon nanowire field-effect transistor. Exploiting the corner effect, we study the versatility of the structure in the single quantum dot and the serial double quantum dot regimes and extract the relevant capacitance parameters. We address the fabrication variability of the quadruple-gate approach which, paired with improved silicon fabrication techniques, makes the corner state quantum dot approach a promising candidate for a scalable quantum information architecture

    The Active Corona of HD 35850 (F8 V)

    Get PDF
    We present Extreme Ultraviolet Explorer spectroscopy and photometry of the nearby F8 V star HD 35850 (HR 1817). The EUVE spectra reveal 28 emission lines from Fe IX and Fe XV to Fe XXIV. The Fe XXI 102, 129 A ratio yields an upper limit for the coronal electron density, log n < 11.6 per cc. The EUVE SW spectrum shows a small but clearly detectable continuum. The line-to-continuum ratio indicates approximately solar Fe abundances, 0.8 < Z < 1.6. The resulting emission-measure distribution is characterized by two temperature components at log T of 6.8 and 7.4. The EUVE spectra have been compared with non-simultaneous ASCA SIS spectra of HD 35850. The SIS spectrum shows the same temperature distribution as the EUVE DEM analysis. However, the SIS spectral firs suggest sub-solar abundances, 0.34 < Z < 0.81. Although some of the discrepancy may be the result of incomplete X-ray line lists, we cannot explain the disagreement between the EUVE line-to-continuum ratio and the ASCA-derived Fe abundance. Given its youth (t ~ 100 Myr), its rapid rotation (v sin i ~ 50 km/s), and its high X-ray activity (Lx ~ 1.5E+30 ergs/s), HD 35850 may represent an activity extremum for single, main-sequence F-type stars. The variability and EM distribution can be reconstructed using the continuous flaring model of Guedel provided that the flare distribution has a power-law index of 1.8. Similar results obtained for other young solar analogs suggest that continuous flaring is a viable coronal heating mechanism on rapidly rotating, late-type, main-sequence stars.Comment: 32 pages incl. 14 figures and 3 tables. To appear in the 1999 April 10 issue of The Astrophysical Journa

    A complete sample of bright Swift short Gamma-Ray Bursts

    Full text link
    We present a carefully selected sample of short gamma-ray bursts (SGRBs) observed by the Swift satellite up to June 2013. Inspired by the criteria we used to build a similar sample of bright long GRBs (the BAT6 sample), we selected SGRBs with favorable observing conditions for the redshift determination on ground, ending up with a sample of 36 events, almost half of which with a redshift measure. The redshift completeness increases up to about 70% (with an average redshift value of z = 0.85) by restricting to those events that are bright in the 15-150 keV Swift Burst Alert Telescope energy band. Such flux-limited sample minimizes any redshift-related selection effects, and can provide a robust base for the study of the energetics, redshift distribution and environment of the Swift bright population of SGRBs. For all the events of the sample we derived the prompt and afterglow emission in both the observer and (when possible) rest frame and tested the consistency with the correlations valid for long GRBs. The redshift and intrinsic X-ray absorbing column density distributions we obtain are consistent with the scenario of SGRBs originated by the coalescence of compact objects in primordial binaries, with a possible minor contribution (~10%-25%) of binaries formed by dynamical capture (or experiencing large natal kicks). This sample is expected to significantly increase with further years of Swift activity.Comment: 17 pages, 8 figures, 7 tables. Accepted for publication in MNRA
    corecore