6,776 research outputs found
On the anomalous X-ray afterglows of GRB 970508 and GRB 970828
Recently, BeppoSAX and ASCA have reported an unusual resurgence of soft X-ray
emission during the afterglows of GRB 970508 and GRB 970828, together with
marginal evidence for the existence of Fe-lines in both objects. We consider
the implications of the existence of a torus of iron-rich material surrounding
the sites of gamma ray bursts as would be expected in the SupraNova model; in
particular, we show that the fireball will quickly hit this torus, and bring it
to a temperature ~3x10^7 K. Bremsstrahlung emission from the heated up torus
will cause a resurgence of the soft X-ray emission with all expected
characteristics (flux level, duration and spectral hardening with time)
identical to those observed during the reburst. Also, thermal emission from the
torus will account for the observed iron line flux. These events are also
observable, for instance by new missions such as SWIFT, when beaming away from
our line sight makes us miss the main burst, as Fast (soft) X-ray Transients,
with durations ~10^3 s, and fluences ~10^-7-10^-4 erg cm^-2. This model
provides evidence in favor of the SupraNova model for Gamma Ray Bursts.Comment: To appear in MN Pink pages, MN-LateX, no figure
Topological and geometrical entanglement in a model of circular DNA undergoing denaturation
The linking number (topological entanglement) and the writhe (geometrical
entanglement) of a model of circular double stranded DNA undergoing a thermal
denaturation transition are investigated by Monte Carlo simulations. By
allowing the linking number to fluctuate freely in equilibrium we see that the
linking probability undergoes an abrupt variation (first-order) at the
denaturation transition, and stays close to 1 in the whole native phase. The
average linking number is almost zero in the denatured phase and grows as the
square root of the chain length, N, in the native phase. The writhe of the two
strands grows as the square root of N in both phases.Comment: 7 pages, 11 figures, revte
Ranking knots of random, globular polymer rings
An analysis of extensive simulations of interacting self-avoiding polygons on
cubic lattice shows that the frequencies of different knots realized in a
random, collapsed polymer ring decrease as a negative power of the ranking
order, and suggests that the total number of different knots realized grows
exponentially with the chain length. Relative frequencies of specific knots
converge to definite values because the free energy per monomer, and its
leading finite size corrections, do not depend on the ring topology, while a
subleading correction only depends on the crossing number of the knots.Comment: 4 pages, 5 figure
On gravitomagnetic precession around black holes
We compute exactly the Lense-Thirring precession frequency for point masses
in the Kerr metric, for arbitrary black hole mass and specific angular
momentum. We show that this frequency, for point masses at or close to the
innermost stable orbit, and for holes with moderate to extreme rotation, is
less than, but comparable to the rotation frequency. Thus, if the quasi
periodic oscillations (QPOs) observed in the modulation of the X-ray flux from
some black holes candidates are due to Lense-Thirring precession of orbiting
material, we predict that a separate, distinct QPO ought to be observed in each
object.Comment: Accepted for publication in MNRAS. MN-Latex, 2 figure
Relativistic precession around rotating neutron stars: Effects due to frame-dragging and stellar oblateness
General relativity predicts that a rotating body produces a frame-dragging
(or Lense-Thirring) effect: the orbital plane of a test particle in a
non-equatorial orbit precesses about the body's symmetry axis. In this paper we
compute the precession frequencies of circular orbits around rapidly rotating
neutron stars for a variety of masses and equations of state. The precession
frequencies computed are expressed as numerical functions of the orbital
frequency observed at infinity. The post-Newtonian expansion of the exact
precession formula is examined to identify the relative magnitudes of the
precession caused by the Lense-Thirring effect, the usual Newtonian quadrupole
effect and relativistic corrections. The first post-Newtonian correction to the
Newtonian quadrupole precession is derived in the limit of slow rotation. We
show that the post-Newtonian precession formula is a good approximation to the
exact precession close to the neutron star in the slow rotation limit (up to
\sim 400 Hz in the present context).
The results are applied to recent RXTE observations of neutron star low-mass
X-ray binaries, which display kHz quasi-periodic oscillations and, within the
framework of beat frequency models, allow the measurement of both the neutron
star spin frequency and the Keplerian frequency of the innermost ring of matter
in the accretion disk around it. For a wide range of realistic equations of
state, we find that the predicted precession frequency of this ring is close to
one half of the low-frequency (\sim 20 - 35 Hz) quasi-periodic oscillations
seen in several Atoll sources.Comment: 35 pages including 10 figures and 6 tables. To appear in the
Astrophysical Journa
Robust non-adiabatic molecular dynamics for metals and insulators
We present a new formulation of the correlated electron-ion dynamics (CEID)
scheme, which systematically improves Ehrenfest dynamics by including quantum
fluctuations around the mean-field atomic trajectories. We show that the method
can simulate models of non-adiabatic electronic transitions, and test it
against exact integration of the time-dependent Schroedinger equation. Unlike
previous formulations of CEID, the accuracy of this scheme depends on a single
tunable parameter which sets the level of atomic fluctuations included. The
convergence to the exact dynamics by increasing the tunable parameter is
demonstrated for a model two level system. This algorithm provides a smooth
description of the non-adiabatic electronic transitions which satisfies the
kinematic constraints (energy and momentum conservation) and preserves quantum
coherence. The applicability of this algorithm to more complex atomic systems
is discussed.Comment: 36 pages, 5 figures. Accepted for publication in Journal of Chemical
Physic
Analysis of X-ray flares in GRBs
We present a detailed study of the spectral and temporal properties of the
X-ray flares emission of several GRBs. We select a sample of GRBs which X-ray
light curve exhibits large amplitude variations with several rebrightenings
superposed on the underlying three-segment broken powerlaw that is often seen
in Swift GRBs. We try to understand the origin of these fluctuations giving
some diagnostic in order to discriminate between refreshed shocks and late
internal shocks. For some bursts our time-resolved spectral analysis supports
the interpretation of a long-lived central engine, with rebrightenings
consistent with energy injection in refreshed shocks as slower shells generated
in the central engine prompt phase catch up with the afterglow shock at later
times.Comment: 9 pages, 3 figures. Invited talk at the Swift-Venice 2006 meeting to
be published by "Il Nuovo Cimento
- …