1,483 research outputs found
A checklist of the Limnichidae and the Lutrochidae (Coleoptera) of the world
A checklist of the world species of Limnichidae (35 genera, 345 species) and Lutrochidae (1 genus, 11 species) is presented. The author, year of publication and page number, synonyms, distribution by country, and a terminal bibliography are given for each genus and species. Biological information is also reviewed
ECONOMICALLY RELEVANT TRAITS AND SELECTION INDICES
Sire selection should focus on that which is economical. This requires a true accounting of the traits that generate revenue or incur a cost within a specific beef cattle enterprise. Once the drivers of profit have been identified, sire selection should focus on the suite of traits that impact profitability. The use of bio-economic selection indices can dramatically reduce the complexity of multiple trait selection and aid in sire selection towards increased profitability. It is critical to use selection indices that match the intended production system. Using a terminal index in an enterprise that retains replacement heifers would not be advisable. Although there have been previous attempts to deliver decision support tools to the beef industry, there is renewed interest in generating web-based software to aid in sire selection that contemplates across-breed EPD, heterosis, and the economic drivers of a particular enterprise. Producers that have more detailed knowledge of economic costs and returns will benefit more from such a tool
Crew procedures development techniques
The study developed requirements, designed, developed, checked out and demonstrated the Procedures Generation Program (PGP). The PGP is a digital computer program which provides a computerized means of developing flight crew procedures based on crew action in the shuttle procedures simulator. In addition, it provides a real time display of procedures, difference procedures, performance data and performance evaluation data. Reconstruction of displays is possible post-run. Data may be copied, stored on magnetic tape and transferred to the document processor for editing and documentation distribution
Advanced crew procedures development techniques
The development of an operational computer program, the Procedures and Performance Program (PPP), is reported which provides a procedures recording and crew/vehicle performance monitoring capability. The PPP provides real time CRT displays and postrun hardcopy of procedures, difference procedures, performance, performance evaluation, and training script/training status data. During post-run, the program is designed to support evaluation through the reconstruction of displays to any point in time. A permanent record of the simulation exercise can be obtained via hardcopy output of the display data, and via magnetic tape transfer to the Generalized Documentation Processor (GDP). Reference procedures data may be transferred from the GDP to the PPP
Including Gene Edited Sires in Genetic Evaluations
A simulation study investigated and provided potential solutions to practical issues that could arise from including gene-edited sires in routine genetic evaluations. Gene-editing is a technique for adding, deleting, or replacing nucleotides in the genome. Editing nucleotides controlling important socioeconomic traits (e.g., growth, carcass, disease susceptibility) is expected to improve rates of genetic gain. However, targeted alterations of the genome can affect the relationship among individuals and, consequently, introduce bias in Expected Progeny Differences. The current study illustrated that, indeed, Expected Progeny Differences for the progeny of edited sires were underestimated. Consequently, these animals would be less likely to be selected as parents for subsequent generations. Therefore, if edited sires are introduced into genetic evaluations, the statistical models used in the evaluation need to appropriately accommodate the changes among animals that the targeted gene edits create, and adjusting the kinship among animals is one way to do this. Without accounting for these targeted changes Expected Progeny Differences will be biased, and selection decisions could be made incorrectly
Economic selection index development for Beefmaster cattle I: Terminal breeding objective
The objective of this study was to develop an economic selection index for Beefmaster cattle in a terminal production system where bulls are mated to mature cows with all resulting progeny harvested. National average prices from 2010 to 2014 were used to establish income and expenses for the system. Phenotypic and genetic parameter values among the selection criteria and goal traits were obtained from literature. Economic values were estimated by simulating 100,000 animals and approximating the partial derivatives of the profit function by perturbing traits one at a time, by 1 unit, while holding the other traits constant at their respective means. Relative economic values (REV) for the terminal objective traits HCW, marbling score (MS), ribeye area (REA), 12th–rib fat (FAT), and feed intake (FI) were 91.29, 17.01, 8.38, -7.07, and -29.66, respectively. Consequently, improving the efficiency of beef production is expected to impact profitability greater than improving carcass merit alone. The accuracy of the index lies between 0.338 (phenotypic selection) and 0.503 (breeding values known without error). The application of this index would aid Beefmaster breeders in their sire selection decisions, facilitating genetic improvement for a terminal breeding objective
Genomic Relatedness Strengthens Genetic Connectedness Across Management Units
Genetic connectedness refers to a measure of genetic relatedness across management units (e.g., herds and flocks). With the presence of high genetic connectedness in management units, best linear unbiased prediction (BLUP) is known to provide reliable comparisons between estimated genetic values. Genetic connectedness has been studied for pedigree-based BLUP; however, relatively little attention has been paid to using genomic information to measure connectedness. In this study, we assessed genomebased connectedness across management units by applying prediction error variance of difference (PEVD), coefficient of determination (CD), and prediction error correlation r to a combination of computer simulation and real data (mice and cattle). We found that genomic information (G) increased the estimate of connectedness among individuals from different management units compared to that based on pedigree (A). A disconnected design benefited the most. In both datasets, PEVD and CD statistics inferred increased connectedness across units when using G- rather than A-based relatedness, suggesting stronger connectedness. With r once using allele frequencies equal to one-half or scaling G to values between 0 and 2, which is intrinsic to A; connectedness also increased with genomic information. However, PEVD occasionally increased, and r decreased when obtained using the alternative form of G; instead suggesting less connectedness. Such inconsistencies were not found with CD. We contend that genomic relatedness strengthens measures of genetic connectedness across units and has the potential to aid genomic evaluation of livestock species
Do stronger measures of genomic connectedness enhance prediction accuracies across management units?
Genetic connectedness assesses the extent to which estimated breeding values can be fairly compared across management units. Ranking of individuals across units based on best linear unbiased prediction (BLUP) is reliable when there is a sufficient level of connectedness due to a better disentangling of genetic signal from noise. Connectedness arises from genetic relationships among individuals. Although a recent study showed that genomic relatedness strengthens the estimates of connectedness across management units compared with that of pedigree, the relationship between connectedness measures and prediction accuracies only has been explored to a limited extent. In this study, we examined whether increased measures of connectedness led to higher prediction accuracies evaluated by a cross-validation (CV) based on computer simulations. We applied prediction error variance of the difference, coefficient of determination (CD), and BLUP-type prediction models to data simulated under various scenarios. We found that a greater extent of connectedness enhanced accuracy of whole-genome prediction. The impact of genomics was more marked when large numbers of markers were used to infer connectedness and evaluate prediction accuracy. Connectedness across units increased with the proportion of connecting individuals and this increase was associated with improved accuracy of prediction. The use of genomic information resulted in increased estimates of connectedness and improved prediction accuracies compared with those of pedigree-based models when there were enough markers to capture variation due to QTL signals
Economic selection index development for Beefmaster cattle II: General-purpose breeding objective
An economic selection index was developed for Beefmaster cattle in a general-purpose production system in which bulls are mated to a combination of heifers and mature cows, with resulting progeny retained as replacements or sold at weaning. National average prices from 2010 to 2014 were used to establish income and expenses for the system. Genetic parameters were obtained from the literature. Economic values were estimated by simulating 100,000 animals and approximating the partial derivatives of the profit function by perturbing traits 1 at a time, by 1 unit, while holding the other traits constant at their respective means. Relative economic values for the objective traits calving difficultly direct (CDd), calving difficulty maternal (CDm), weaning weight direct (WWd), weaning weight maternal (WWm), mature cow weight (MW), and heifer pregnancy (HP) were −2.11, −1.53, 18.49, 11.28, −33.46, and 1.19, respectively. Consequently, under the scenario assumed herein, the greatest improvements in profitability could be made by decreasing maintenance energy costs associated with MW followed by improvements in weaning weight. The accuracy of the index lies between 0.218 (phenotypic-based index selection) and 0.428 (breeding values known without error). Implementation of this index would facilitate genetic improvement and increase profitability of Beefmaster cattle operations with a general-purpose breeding objective when replacement females are retained and with weaned calves as the sale end point
- …