29,606 research outputs found

    Corrugation of relativistic magnetized shock waves

    Full text link
    As a shock front interacts with turbulence, it develops corrugation which induces outgoing wave modes in the downstream plasma. For a fast shock wave, the incoming wave modes can either be fast magnetosonic waves originating from downstream, outrunning the shock, or eigenmodes of the upstream plasma drifting through the shock. Using linear perturbation theory in relativistic MHD, this paper provides a general analysis of the corrugation of relativistic magnetized fast shock waves resulting from their interaction with small amplitude disturbances. Transfer functions characterizing the linear response for each of the outgoing modes are calculated as a function of the magnetization of the upstream medium and as a function of the nature of the incoming wave. Interestingly, if the latter is an eigenmode of the upstream plasma, we find that there exists a resonance at which the (linear) response of the shock becomes large or even diverges. This result may have profound consequences on the phenomenology of astrophysical relativistic magnetized shock waves.Comment: 14 pages, 9 figures; to appear in Ap

    The q-gradient method for global optimization

    Full text link
    The q-gradient is an extension of the classical gradient vector based on the concept of Jackson's derivative. Here we introduce a preliminary version of the q-gradient method for unconstrained global optimization. The main idea behind our approach is the use of the negative of the q-gradient of the objective function as the search direction. In this sense, the method here proposed is a generalization of the well-known steepest descent method. The use of Jackson's derivative has shown to be an effective mechanism for escaping from local minima. The q-gradient method is complemented with strategies to generate the parameter q and to compute the step length in a way that the search process gradually shifts from global in the beginning to almost local search in the end. For testing this new approach, we considered six commonly used test functions and compared our results with three Genetic Algorithms (GAs) considered effective in optimizing multidimensional unimodal and multimodal functions. For the multimodal test functions, the q-gradient method outperformed the GAs, reaching the minimum with a better accuracy and with less function evaluations.Comment: 12 pages, 1 figur

    Generalized enthalpy model of a high pressure shift freezing process

    Get PDF
    High-pressure freezing processes are a novel emerging technology in food processing, offering significant improvements to the quality of frozen foods. To be able to simulate plateau times and thermal history under different conditions, in this work we present a generalized enthalpy model of the high-pressure shift freezing process. The model includes the effects of pressure on conservation of enthalpy and incorporates the freezing point depression of non-dilute food samples. In addition the significant heat transfer effects of convection in the pressurizing medium are accounted for by solving the two-dimensional Navier-Stokes equations. We run the model for several numerical tests where the food sample is agar gel, and find good agreement with experimental data from the literature

    Hyperon effects on the properties of β\beta-stable neutron star matter

    Full text link
    We present results from Brueckner-Hartree-Fock calculations for β\beta-stable neutron star matter with nucleonic and hyperonic degrees of freedom employing the most recent parametrizations of the baryon-baryon interaction of the Nijmegen group. Only Σ\Sigma^- and Λ\Lambda are present up to densities 7ρ0\sim 7\rho_0. The corresponding equations of state are then used to compute properties of neutron stars such as masses and radii.Comment: 4 pages, contributed talk at HYP2000, Torino, 23-27 Oct. 200

    Particle Multiplicity in Jets and Sub-jets with Jet Axis from Color Current

    Full text link
    We study the particle multiplicity in a jet or sub-jet as derived from an energy-multiplicity 2-particle correlation. This definition avoids the notion of a globally fixed jet axis and allows for the study of smaller jet cone openings in a more stable way. The results are sensitive to the mean color current A0_{A_0} in the jet from primary parton A0A_0 which takes into account intermediate partonic processes in the sub-jet production where CF<<C>A0<NcC_F< < C >_{A_0} < N_c at high energies. We generalize previous calculations in Leading Logarithmic Approximation (LLA). The size of the effects related to this jet axis definition are computed for multiplicities in sub-jets with different opening angles and energies by including contributions from the Modified LLA (MLLA) and Next-to-MLLA to the leading order QCD results
    corecore