8,020 research outputs found

    Localization in momentum space of ultracold atoms in incommensurate lattices

    Full text link
    We characterize the disorder induced localization in momentum space for ultracold atoms in one-dimensional incommensurate lattices, according to the dual Aubry-Andr\'e model. For low disorder the system is localized in momentum space, and the momentum distribution exhibits time-periodic oscillations of the relative intensity of its components. The behavior of these oscillations is explained by means of a simple three-mode approximation. We predict their frequency and visibility by using typical parameters of feasible experiments. Above the transition the system diffuses in momentum space, and the oscillations vanish when averaged over different realizations, offering a clear signature of the transition

    A Model for the Propagation of Sound in Granular Materials

    Full text link
    This paper presents a simple ball-and-spring model for the propagation of small amplitude vibrations in a granular material. In this model, the positional disorder in the sample is ignored and the particles are placed on the vertices of a square lattice. The inter-particle forces are modeled as linear springs, with the only disorder in the system coming from a random distribution of spring constants. Despite its apparent simplicity, this model is able to reproduce the complex frequency response seen in measurements of sound propagation in a granular system. In order to understand this behavior, the role of the resonance modes of the system is investigated. Finally, this simple model is generalized to include relaxation behavior in the force network -- a behavior which is also seen in real granular materials. This model gives quantitative agreement with experimental observations of relaxation.Comment: 21 pages, requires Harvard macros (9/91), 12 postscript figures not included, HLRZ preprint 6/93, (replacement has proper references included

    Emission spectrum of quasi-resonant laterally coupled quantum dots

    Get PDF
    We calculate the emission spectrum of neutral and charged excitons in a pair of laterally coupled InGaAs quantum dots with nearly degenerate energy levels. As the interdot distance decreases, a number of changes take place in the emission spectrum which can be used as indications of molecular coupling. These signatures ensue from the stronger tunnel-coupling of trions as compared to that of neutral excitons.Comment: 7 pages, 7 figure

    An Interneuron Circuit Reproducing Essential Spectral Features of Field Potentials

    Get PDF
    This document is the Accepted Manuscript version of the following article: Reinoud Maex, ‘An Interneuron Circuit Reproducing Essential Spectral Features of Field Potentials’, Neural Computation, March 2018. Under embargo until 22 June 2018. The final, definitive version of this paper is available online at doi: https://doi.org/10.1162/NECO_a_01068. © 2018 Massachusetts Institute of Technology. Content in the UH Research Archive is made available for personal research, educational, and non-commercial purposes only. Unless otherwise stated, all content is protected by copyright, and in the absence of an open license, permissions for further re-use should be sought from the publisher, the author, or other copyright holder.Recent advances in engineering and signal processing have renewed the interest in invasive and surface brain recordings, yet many features of cortical field potentials remain incompletely understood. In the present computational study, we show that a model circuit of interneurons, coupled via both GABA(A) receptor synapses and electrical synapses, reproduces many essential features of the power spectrum of local field potential (LFP) recordings, such as 1/f power scaling at low frequency (< 10 Hz) , power accumulation in the γ-frequency band (30–100 Hz), and a robust α rhythm in the absence of stimulation. The low-frequency 1/f power scaling depends on strong reciprocal inhibition, whereas the α rhythm is generated by electrical coupling of intrinsically active neurons. As in previous studies, the γ power arises through the amplifica- tion of single-neuron spectral properties, owing to the refractory period, by parameters that favour neuronal synchrony, such as delayed inhibition. The present study also confirms that both synaptic and voltage-gated membrane currents substantially contribute to the LFP, and that high-frequency signals such as action potentials quickly taper off with distance. Given the ubiquity of electrically coupled interneuron circuits in the mammalian brain, they may be major determinants of the recorded potentials.Peer reviewe

    Vortex signatures in annular Bose-Einstein condensates

    Full text link
    We consider a Bose-Einstein condensate confined in a ``Mexican hat'' potential, with a quartic minus quadratic radial dependence. We find conditions under which the ground state is annular in shape, with a hole in the center of the condensate. Rotation leads to the appearance of stable multiply-quantized vortices, giving rise to a superfluid flow around the ring. The collective modes of the system are explored both numerically and analytically using the Gross-Pitaevskii and hydrodynamic equations. Potential experimental schemes to detect vorticity are proposed and evaluated, which include measuring the splitting of collective mode frequencies, observing expansion following release from the trap, and probing the momentum distribution of the condensate.Comment: 11 pages, 7 figure

    Hydrodynamic orienting of asymmetric microobjects under gravity

    Full text link
    It is shown that nonsymmetric microobjects orient while settling under gravity in a viscous fluid. To analyze this process, a simple shape is chosen: a non-deformable `chain'. The chain consists of two straight arms, made of touching solid spheres. In the absence of external torques, the spheres are free to spin along the arms. The motion of the chain is evaluated by solving the Stokes equations with the use of the multipole method. It is demonstrated that the spinning beads speed up sedimentation by a small amount, and increase the orientation rate significantly in comparison to the corresponding rigid chain. It is shown that chains orient towards the V-shaped stable stationary configuration. In contrast, rods and star-shaped microobjects do not rotate. The hydrodynamic orienting is relevant for efficient swimming of non-symmetric microobjects, and for sedimenting suspensions.Comment: 9 page

    Switchable Genetic Oscillator Operating in Quasi-Stable Mode

    Get PDF
    Ring topologies of repressing genes have qualitatively different long-term dynamics if the number of genes is odd (they oscillate) or even (they exhibit bistability). However, these attractors may not fully explain the observed behavior in transient and stochastic environments such as the cell. We show here that even repressilators possess quasi-stable, travelling-wave periodic solutions that are reachable, long-lived and robust to parameter changes. These solutions underlie the sustained oscillations observed in even rings in the stochastic regime, even if these circuits are expected to behave as switches. The existence of such solutions can also be exploited for control purposes: operation of the system around the quasi-stable orbit allows us to turn on and off the oscillations reliably and on demand. We illustrate these ideas with a simple protocol based on optical interference that can induce oscillations robustly both in the stochastic and deterministic regimes.Comment: 24 pages, 5 main figure

    Emergence of time-horizon invariant correlation structure in financial returns by subtraction of the market mode

    Get PDF
    We investigate the emergence of a structure in the correlation matrix of assets' returns as the time-horizon over which returns are computed increases from the minutes to the daily scale. We analyze data from different stock markets (New York, Paris, London, Milano) and with different methods. Result crucially depends on whether the data is restricted to the ``internal'' dynamics of the market, where the ``center of mass'' motion (the market mode) is removed or not. If the market mode is not removed, we find that the structure emerges, as the time-horizon increases, from splitting a single large cluster. In NYSE we find that when the market mode is removed, the structure of correlation at the daily scale is already well defined at the 5 minutes time-horizon, and this structure accounts for 80 % of the classification of stocks in economic sectors. Similar results, though less sharp, are found for the other markets. We also find that the structure of correlations in the overnight returns is markedly different from that of intraday activity.Comment: 12 pages, 17 figure

    Linear and Non Linear Effects on the Newtonian Gravitational Constant as deduced from the Torsion Balance

    Full text link
    The Newtonian gravitational constant has still 150 parts per million of uncertainty. This paper examines the linear and nonlinear equations governing the rotational dynamics of the torsion gravitational balance. A nonlinear effect modifying the oscillation period of the torsion gravitational balance is carefully explored.Comment: 11 pages, 2 figure

    Long range scattering effects on spin Hall current in pp-type bulk semiconductors

    Full text link
    Employing a nonequilibrium Green's function approach, we examine the effects of long-range hole-impurity scattering on spin-Hall current in pp-type bulk semiconductors within the framework of the self-consistent Born approximation. We find that, contrary to the null effect of short-range scattering on spin-Hall current, long-range collisions do produce a nonvanishing contribution to the spin-Hall current, which is independent of impurity density in the diffusive regime and relates only to hole states near the Fermi surface. The sign of this contribution is opposite to that of the previously predicted disorder-independent spin-Hall current, leading to a sign change of the total spin-Hall current as hole density varies. Furthermore, we also make clear that the disorder-independent spin-Hall effect is a result of an interband polarization directly induced by the dc electric field with contributions from all hole states in the Fermi sea.Comment: 9 pages, 1 figur
    corecore