23,088 research outputs found

    Assortative Mixing Equilibria in Social Network Games

    Full text link
    It is known that individuals in social networks tend to exhibit homophily (a.k.a. assortative mixing) in their social ties, which implies that they prefer bonding with others of their own kind. But what are the reasons for this phenomenon? Is it that such relations are more convenient and easier to maintain? Or are there also some more tangible benefits to be gained from this collective behaviour? The current work takes a game-theoretic perspective on this phenomenon, and studies the conditions under which different assortative mixing strategies lead to equilibrium in an evolving social network. We focus on a biased preferential attachment model where the strategy of each group (e.g., political or social minority) determines the level of bias of its members toward other group members and non-members. Our first result is that if the utility function that the group attempts to maximize is the degree centrality of the group, interpreted as the sum of degrees of the group members in the network, then the only strategy achieving Nash equilibrium is a perfect homophily, which implies that cooperation with other groups is harmful to this utility function. A second, and perhaps more surprising, result is that if a reward for inter-group cooperation is added to the utility function (e.g., externally enforced by an authority as a regulation), then there are only two possible equilibria, namely, perfect homophily or perfect heterophily, and it is possible to characterize their feasibility spaces. Interestingly, these results hold regardless of the minority-majority ratio in the population. We believe that these results, as well as the game-theoretic perspective presented herein, may contribute to a better understanding of the forces that shape the groups and communities of our society

    Experimental investigation on thermal comfort model between local thermal sensation and overall thermal sensation

    Get PDF
    To study the human local and overall thermal sensations, a series of experiments under various conditions were carried out in a climate control chamber. The adopted analysis method considered the effect of the weight coefficient of local average skin temperature and density of the cold receptors’ distribution in different local body areas. The results demonstrated that the thermal sensation of head, chest, back and hands is warmer than overall thermal sensation. The mean thermal sensation votes of those local areas were more densely distributed. In addition, the thermal sensation of arms, tight and calf was colder than the overall thermal sensation, which pronounced that thermal sensation votes were more dispersed. The thermal sensation of chest and back had a strong linear correlation with overall thermal sensation. Considering the actual scope of air-conditioning regulation, the human body was classified into three local parts: a) head, b) upper part of body and c) lower part of body. The prediction model of both the three-part thermal sensation and overall thermal sensation was developed. Weight coefficients were 0.21, 0.60 and 0.19 respectively. The model provides scientist basis for guiding the sage installation place of the personal ventilation system to achieve efficient energy use

    Observational Evidence for an Age Dependence of Halo Bias

    Full text link
    We study the dependence of the cross-correlation between galaxies and galaxy groups on group properties. Confirming previous results, we find that the correlation strength is stronger for more massive groups, in good agreement with the expected mass dependence of halo bias. We also find, however, that for groups of the same mass, the correlation strength depends on the star formation rate (SFR) of the central galaxy: at fixed mass, the bias of galaxy groups decreases as the SFR of the central galaxy increases. We discuss these findings in light of the recent findings by Gao et al (2005) that halo bias depends on halo formation time, in that halos that assemble earlier are more strongly biased. We also discuss the implication for galaxy formation, and address a possible link to galaxy conformity, the observed correlation between the properties of satellite galaxies and those of their central galaxy.Comment: 4 pages, 4 figures, Accepted for publication in ApJ Letters. Figures 3 and 4 replaced. The bias dependence on the central galaxy luminosity is omitted due to its sensitivity to the mass mode

    Independent Orbiter Assessment (IOA): FMEA/CIL assessment

    Get PDF
    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. Direction was given by the Orbiter and GFE Projects Office to perform the hardware analysis and assessment using the instructions and ground rules defined in NSTS 22206. The IOA analysis features a top-down approach to determine hardware failure modes, criticality, and potential critical items. To preserve independence, the anlaysis was accomplished without reliance upon the results contained within the NASA and prime contractor FMEA/CIL documentation. The assessment process compares the independently derived failure modes and criticality assignments to the proposed NASA Post 51-L FMEA/CIL documentation. When possible, assessment issues are discussed and resolved with the NASA subsystem managers. The assessment results for each subsystem are summarized. The most important Orbiter assessment finding was the previously unknown stuck autopilot push-button criticality 1/1 failure mode, having a worst case effect of loss of crew/vehicle when a microwave landing system is not active

    Internet source evaluation: The role of implicit associations and psychophysiological self-regulation

    Get PDF
    This study focused on middle school students\u2019 source evaluation skills as a key component of digital literacy. Specifically, it examined the role of two unexplored individual factors that may affect the evaluation of sources providing information about the controversial topic of the health risks associated with the use of mobile phones. The factors were the implicit association of mobile phone with health or no health, and psychophysiological self-regulation as reflected in basal Heart Rate Variability (HRV). Seventy-two seventh graders read six webpages that provided contrasting information on the unsettled topic of the potential health risks related to the use of mobile phones. Then they were asked to rank-order the six websites along the dimension of reliability (source evaluation). Findings revealed that students were able to discriminate between the most and least reliable websites, justifying their ranking in light of different criteria. However, overall, they were little accurate in rank-ordering all six Internet sources. Both implicit associations and HRV correlated with source evaluation. The interaction between the two individual variables was a significant predictor of participants\u2019 performance in rank-ordering the websites for reliability. A slope analysis revealed that when students had an average psychophysiological self-regulation, the stronger their association of the mobile phone with health, the better their performance on source evaluation. Theoretical and educational significances of the study are discussed

    Angular separations of the lensed QSO images

    Full text link
    We have analyzed the observed image separations of the gravitationally lensed images of QSOs for a possible correlation with the source redshift. Contrary to the previously noted anti-correlation based on a smaller data set, no correlation is found for the currently available data. We have calculated the average image separations of the lensed QSOs as a function of source redshifts, for isothermal spheres with cores in a flat universe, taking into account the amplification bias caused by lensing. The shape of the distribution of average image separation as a function of redshift is very robust and is insensitive to most model parameters. Observations are found to be roughly consistent with the theoretical results for models which assume the lens distribution to be (i) Schechter luminosity function which, however, can not produce images with large separation and (ii) the mass condensations in a cold dark matter universe, as given by the Press-Schechter theory if an upper limit of 1-7×1013\times 10^{13} M\odot is assumed on the mass of the condensations.Comment: 20 pages, 7 postscript figures, accepted for publication in The Astrophysical Journa

    Imprint of Inhomogeneous Reionization on the Power Spectrum of Galaxy Surveys at High Redshifts

    Full text link
    We consider the effects of inhomogeneous reionization on the distribution of galaxies at high redshifts. Modulation of the formation process of the ionizing sources by large scale density modes makes reionization inhomogeneous and introduces a spread to the reionization times of different regions with the same size. After sources photo-ionize and heat these regions to a temperature \ga 10^4K at different times, their temperatures evolve as the ionized intergalactic medium (IGM) expands. The varying IGM temperature makes the minimum mass of galaxies spatially non-uniform with a fluctuation amplitude that increases towards small scales. These scale-dependent fluctuations modify the shape of the power spectrum of low-mass galaxies at high redshifts in a way that depends on the history of reionization. The resulting distortion of the primordial power spectrum is significantly larger than changes associated with uncertainties in the inflationary parameters, such as the spectral index of the scalar power spectrum or the running of the spectral index. Future surveys of high-redshift galaxies will offer a new probe of the thermal history of the IGM but might have a more limited scope in constraining inflation.Comment: 8 pages, 5 figures, replaced to match version accepted by Ap

    Galaxy Groups in the SDSS DR4: II. halo occupation statistics

    Full text link
    We investigate various halo occupation statistics using a large galaxy group catalogue constructed from the SDSS DR4 with an adaptive halo-based group finder. The conditional luminosity function (CLF) is measured separately for all, red and blue galaxies, as well as in terms of central and satellite galaxies. The CLFs for central and satellite galaxies can be well modelled with a log-normal distribution and a modified Schechter form, respectively. About 85% of the central galaxies and about 80% of the satellite galaxies in halos with masses M_h\ga 10^{14}\msunh are red galaxies. These numbers decrease to 50% and 40%, respectively, in halos with M_h \sim 10^{12}\msunh. For halos of a given mass, the distribution of the luminosities of central galaxies, LcL_c, has a dispersion of about 0.15 dex. The mean luminosity (stellar mass) of the central galaxies scales with halo mass as LcMh0.17L_c\propto M_h^{0.17} (M,cMh0.22M_{*,c}\propto M_h^{0.22}) for halos with masses M\gg 10^{12.5}\msunh, and both relations are significantly steeper for less massive halos. We also measure the luminosity (stellar mass) gap between the first and second brightest (most massive) member galaxies, logL1logL2\log L_1 - \log L_2 (logM,1logM,2\log M_{*,1}-\log M_{*,2}). These gap statistics, especially in halos with M_h \la 10^{14.0}\msunh, indicate that the luminosities of central galaxies are clearly distinct from those of their satellites. The fraction of fossil groups, defined as those groups with logL1logL20.8\log L_1 - \log L_2\ge 0.8, ranges from 2.5\sim 2.5% for groups with M_h\sim 10^{14}\msunh to 18-60% for groups with M_h\sim 10^{13}\msunh. Finally, we measure the fraction of satellites, which changes from 5.0\sim 5.0% for galaxies with \rmag\sim -22.0 to 40\sim40% for galaxies with \rmag\sim -17.0. (abridged)Comment: 16 pages, 11 figures. Accepted for publication in Ap

    Mesoscopic colonization of a spectral band

    Full text link
    We consider the unitary matrix model in the limit where the size of the matrices become infinite and in the critical situation when a new spectral band is about to emerge. In previous works the number of expected eigenvalues in a neighborhood of the band was fixed and finite, a situation that was termed "birth of a cut" or "first colonization". We now consider the transitional regime where this microscopic population in the new band grows without bounds but at a slower rate than the size of the matrix. The local population in the new band organizes in a "mesoscopic" regime, in between the macroscopic behavior of the full system and the previously studied microscopic one. The mesoscopic colony may form a finite number of new bands, with a maximum number dictated by the degree of criticality of the original potential. We describe the delicate scaling limit that realizes/controls the mesoscopic colony. The method we use is the steepest descent analysis of the Riemann-Hilbert problem that is satisfied by the associated orthogonal polynomials.Comment: 17 pages, 2 figures, minor corrections and addition
    corecore