4,696 research outputs found

    An automated tool for the design and assessment of space systems

    Get PDF
    Space systems can be characterized as both large and complex but they often rely on reusable subcomponents. One problem in the design of such systems is the representation and validation of the system, particularly at the higher levels of management. An automated tool is described for the representation, refinement, and validation of such complex systems based on a formal design theory, the Theory of Plausible Design. In particular, the steps necessary to automate the tool and make it a competent, usable assistant, are described

    Calibration of the LIGO displacement actuators via laser frequency modulation

    Full text link
    We present a frequency modulation technique for calibration of the displacement actuators of the LIGO 4-km-long interferometric gravitational-wave detectors. With the interferometer locked in a single-arm configuration, we modulate the frequency of the laser light, creating an effective length variation that we calibrate by measuring the amplitude of the frequency modulation. By simultaneously driving the voice coil actuators that control the length of the arm cavity, we calibrate the voice coil actuation coefficient with an estimated 1-sigma uncertainty of less than one percent. This technique enables a force-free, single-step actuator calibration using a displacement fiducial that is fundamentally different from those employed in other calibration methods.Comment: 10 pages, 5 figures, submitted to Classical and Quantum Gravit

    Trends in Kemp\u27s Ridley Sea Turtle (Lepidochelys kempii) Relative Abundance, Distribution, and Size Composition in Nearshore Waters of the Northwestern Gulf of Mexico

    Get PDF
    Long-term monitoring of in-water life history stages of the critically endangered Kemp’s ridley sea turtle (Lepidochelys kempii) is essential for management because it generates information on the species’ at-sea abundance, size composition, distribution, and habitat requirements. We documented trends in Kemp’s ridley size, relative abundance, and distribution using entanglement netting surveys at three study areas adjacent to tidal passes in the northwestern Gulf of Mexico (NWGOM) during intermittent sampling periods from 1991 to 2013. A total of 656 Kemp’s ridley sea turtles were captured ranging in size from 19.5 to 66.3 cm straight carapace length (SCL) (mean = 35.0 cm SCL). The dominance of juveniles (25–40 cm SCL) captured during sampling suggests the nearshore waters of the NWGOM are an important developmental foraging ground for Kemp’s ridley. Characterization of Kemp’s ridley long-term relative abundance reveals a generally stable trend in catch-per-unit-effort (CPUE) across all study areas combined. Based on the increasing trend in the number of hatchlings released from the species’ primary nesting beach, Rancho Nuevo, Mexico, since the early 1990s, the lack of a corresponding overall increase in juvenile abundance at nearshore sampling locations is puzzling. This disparity is most likely an artifact of the present study’s sampling design, but could also indicate shifts in Kemp’s ridley recruitment away from the NWGOM. While conservation efforts have contributed to this species’ overall growth since the 1980s, as measured by the increasing number of nests, recent declines in this rate of increase are a concern and call for a more comprehensive approach to managing Kemp’s ridley recovery efforts

    GravEn: Software for the simulation of gravitational wave detector network response

    Full text link
    Physically motivated gravitational wave signals are needed in order to study the behaviour and efficacy of different data analysis methods seeking their detection. GravEn, short for Gravitational-wave Engine, is a MATLAB software package that simulates the sampled response of a gravitational wave detector to incident gravitational waves. Incident waves can be specified in a data file or chosen from among a group of pre-programmed types commonly used for establishing the detection efficiency of analysis methods used for LIGO data analysis. Every aspect of a desired signal can be specified, such as start time of the simulation (including inter-sample start times), wave amplitude, source orientation to line of sight, location of the source in the sky, etc. Supported interferometric detectors include LIGO, GEO, Virgo and TAMA.Comment: 10 Pages, 3 Figures, Presented at the 10th Gravitational Wave Data Analysis Workshop (GWDAW-10), 14-17 December 2005 at the University of Texas, Brownsvill

    Accurate calibration of test mass displacement in the LIGO interferometers

    Full text link
    We describe three fundamentally different methods we have applied to calibrate the test mass displacement actuators to search for systematic errors in the calibration of the LIGO gravitational-wave detectors. The actuation frequencies tested range from 90 Hz to 1 kHz and the actuation amplitudes range from 1e-6 m to 1e-18 m. For each of the four test mass actuators measured, the weighted mean coefficient over all frequencies for each technique deviates from the average actuation coefficient for all three techniques by less than 4%. This result indicates that systematic errors in the calibration of the responses of the LIGO detectors to differential length variations are within the stated uncertainties.Comment: 10 pages, 6 figures, submitted on 31 October 2009 to Classical and Quantum Gravity for the proceedings of 8th Edoardo Amaldi Conference on Gravitational Wave

    Precise calibration of LIGO test mass actuators using photon radiation pressure

    Full text link
    Precise calibration of kilometer-scale interferometric gravitational wave detectors is crucial for source localization and waveform reconstruction. A technique that uses the radiation pressure of a power-modulated auxiliary laser to induce calibrated displacements of one of the ~10 kg arm cavity mirrors, a so-called photon calibrator, has been demonstrated previously and has recently been implemented on the LIGO detectors. In this article, we discuss the inherent precision and accuracy of the LIGO photon calibrators and several improvements that have been developed to reduce the estimated voice coil actuator calibration uncertainties to less than 2 percent (1-sigma). These improvements include accounting for rotation-induced apparent length variations caused by interferometer and photon calibrator beam centering offsets, absolute laser power measurement using temperature-controlled InGaAs photodetectors mounted on integrating spheres and calibrated by NIST, minimizing errors induced by localized elastic deformation of the mirror surface by using a two-beam configuration with the photon calibrator beams symmetrically displaced about the center of the optic, and simultaneously actuating the test mass with voice coil actuators and the photon calibrator to minimize fluctuations caused by the changing interferometer response. The photon calibrator is able to operate in the most sensitive interferometer configuration, and is expected to become a primary calibration method for future gravitational wave searches.Comment: 13 pages, 6 figures, accepted by Classical and Quantum Gravit

    Precise calibration of LIGO test mass actuators using photon radiation pressure

    Full text link
    Precise calibration of kilometer-scale interferometric gravitational wave detectors is crucial for source localization and waveform reconstruction. A technique that uses the radiation pressure of a power-modulated auxiliary laser to induce calibrated displacements of one of the ~10 kg arm cavity mirrors, a so-called photon calibrator, has been demonstrated previously and has recently been implemented on the LIGO detectors. In this article, we discuss the inherent precision and accuracy of the LIGO photon calibrators and several improvements that have been developed to reduce the estimated voice coil actuator calibration uncertainties to less than 2 percent (1-sigma). These improvements include accounting for rotation-induced apparent length variations caused by interferometer and photon calibrator beam centering offsets, absolute laser power measurement using temperature-controlled InGaAs photodetectors mounted on integrating spheres and calibrated by NIST, minimizing errors induced by localized elastic deformation of the mirror surface by using a two-beam configuration with the photon calibrator beams symmetrically displaced about the center of the optic, and simultaneously actuating the test mass with voice coil actuators and the photon calibrator to minimize fluctuations caused by the changing interferometer response. The photon calibrator is able to operate in the most sensitive interferometer configuration, and is expected to become a primary calibration method for future gravitational wave searches.Comment: 13 pages, 6 figures, accepted by Classical and Quantum Gravit

    Hydrogen and Deuterium Loss from the Terrestrial Atmosphere: A Quantitative Assessment of Nonthermal Escape Fluxes

    Get PDF
    A comprehensive one-dimensional photochemical model extending from the middle atmosphere (50 km) to the exobase (432 km) has been used to study the escape of hydrogen and deuterium from the Earth's atmosphere. The model incorporates recent advances in chemical kinetics as well as atmospheric observations by satellites, especially the Atmosphere Explorer C satellite. The results suggest: (1) the escape fluxes of both H and D are limited by the upward transport of total hydrogen and total deuterium at the homopause (this result is known as Hunten's limiting flux theorem); (2) about one fourth of total hydrogen escape is thermal, the rest being nonthermal; (3) escape of D is nonthermal; and (4) charge exchange and polar wind are important mechanisms for the nonthermal escape of H and D, but other nonthermal mechanisms may be required. The efficiency to escape from the terrestrial atmosphere for D is 0.74 of the efficiency for H. If the difference between the D/H ratio measured in deep-sea tholeiite glass and that of standard sea water, δD = −77‰, were caused by the escape of H and D, we estimate that as much water as the equivalent of 36% of the present ocean might have been lost in the past
    • …
    corecore