78,115 research outputs found

    Highlights from galactic observations with MAGIC

    Full text link
    MAGIC is one of the main instruments for exploring the galactic gamma-ray sky from ground in the energy range of 50 GeV - 50 TeV. It consists of two 17 m diameter imaging atmospheric Cherenkov telescopes located at the Roque de los Muchachos Observatory, on the Canary island of La Palma. Thanks to its excellent sensitivity, MAGIC has conducted relevant studies on galactic objects of different types at Very High Energies. Among them, the Crab pulsar up to TeV energies, the spectral cut-off of the supernova remnant Cassiopeia A, the super-orbital variability of the binary system LSI +61 303, the search for microqusars, multi-year observations of the Galactic Center and follow-up studies of unidentified HAWC sources. In many cases, the results from these observations challenge our understanding of the underlying emission mechanisms. Here we review the latest results from the observation of these galactic sources with MAGIC.Comment: Proceedings of the 35th International Cosmic Ray Conference (ICRC 2017), Bexco, Busan, Korea (arXiv:1708.05153

    Business Cycle and Speculative Pressures in a Target Zone

    Get PDF
    In the past time, most economies have suffered cyclical fluctuations in their activity which may influence the optimal use of productive factors in long slow-growth phases or price stability in periods of fast growth. This paper focuses on the possible interrelationship between business cycles and exchange rate ‡uctuations. We have chosen the European Monetary System framework in the nineties, from June 1989 to December 1998, because the Peseta belonged to the EMS during that time. This sample is specially interesting because it includes the worst crisis of the System in 1992-93 and the following ones affecting emerging countries like Mexico, Brazil or Russia at the end of the decade. We use a Binary Dependent Variable Logit Model to estimate the readjustment probability inside a band for two currencies, the Peseta and the french Franc . We calculate the dependent variable values from a Markov-Switching Regime Model with constant transition probabilities. We prove that it is a suitable method and that it allows both real and monetary variables to be identified in order to explain speculative pressures.Readjustment Probability, Speculative Pressures, Economic Fluctuations.

    Overview of methodologies for building ontologies

    Get PDF
    A few research groups are now proposing a series of steps and methodologies for developing ontologies. However, mainly due to the fact that Ontological Engineering is still a relatively immature discipline, each work group employs its own methodology. Our goal is to present the most representative methodologies used in ontology development and to perform an analysis of such methodologies against the same framework of reference. So, the goal of this paper is not to provide new insights about methodologies, but to put it all in one place and help people to select which methodology to use

    The bulge luminosity functions in the MSX infrared bands

    Get PDF
    We use an inversion technique to derive the luminosity functions of the Galactic bulge from point source counts extracted from the Midcourse Space Experiment's Point Source Catalog (version 1.2).Comment: 5 pages, 2 figures, to be published in A&

    f(R) brane cosmology

    Full text link
    Despite the nice features of the Dvali, Gabadadze and Porrati (DGP) model to explain the late-time acceleration of the universe, it suffers from some theoretical problems like the ghost issue. We present a way to self-accelerate the normal DGP branch, which is known to be free of the ghost problem, by means of an f(R) term on the brane action. We obtain the de Sitter self-accelerating solutions of the model and study their stability under homogeneous perturbations.Comment: 4 pages, 2 figures. Contribution to the proceedings of Spanish Relativity Meeting 2009, Bilbao, Spain, 7-11 September 200

    Resource location based on precomputed partial random walks in dynamic networks

    Full text link
    The problem of finding a resource residing in a network node (the \emph{resource location problem}) is a challenge in complex networks due to aspects as network size, unknown network topology, and network dynamics. The problem is especially difficult if no requirements on the resource placement strategy or the network structure are to be imposed, assuming of course that keeping centralized resource information is not feasible or appropriate. Under these conditions, random algorithms are useful to search the network. A possible strategy for static networks, proposed in previous work, uses short random walks precomputed at each network node as partial walks to construct longer random walks with associated resource information. In this work, we adapt the previous mechanisms to dynamic networks, where resource instances may appear in, and disappear from, network nodes, and the nodes themselves may leave and join the network, resembling realistic scenarios. We analyze the resulting resource location mechanisms, providing expressions that accurately predict average search lengths, which are validated using simulation experiments. Reduction of average search lengths compared to simple random walk searches are found to be very large, even in the face of high network volatility. We also study the cost of the mechanisms, focusing on the overhead implied by the periodic recomputation of partial walks to refresh the information on resources, concluding that the proposed mechanisms behave efficiently and robustly in dynamic networks.Comment: 39 pages, 25 figure

    One-dimensional relativistic dissipative system with constant force and its quantization

    Full text link
    For a relativistic particle under a constant force and a linear velocity dissipation force, a constant of motion is found. Problems are shown for getting the Hamiltoninan of this system. Thus, the quantization of this system is carried out through the constant of motion and using the quantization of the velocity variable. The dissipative relativistic quantum bouncer is outlined within this quantization approach.Comment: 11 pages, no figure
    corecore