21 research outputs found

    Study of ortho-to-paraexciton conversion in Cu2_2O by excitonic Lyman spectroscopy

    Full text link
    Using time-resolved 1s1s-2p2p excitonic Lyman spectroscopy, we study the orthoexciton-to-paraexcitons transfer, following the creation of a high density population of ultracold 1s1s orthoexcitons by resonant two-photon excitation with femtosecond pulses. An observed fast exciton-density dependent conversion rate is attributed to spin exchange between pairs of orthoexcitons. Implication of these results on the feasibility of BEC of paraexcitons in Cu2_2O is discussed

    The Yellow Excitonic Series of Cu2O Revisited by Lyman Spectroscopy

    Full text link
    We report on the observation of the yellow exciton Lyman series up to the fourth term in Cu2O by time-resolved mid-infrared spectroscopy. The dependence of the oscillator strength on the principal quantum number n can be well reproduced using the hydrogenic model including an AC dielectric constant, and precise information on the electronic structure of the 1s exciton state can be obtained. A Bohr radius a_{1s}=7.9 A and a 1s-2p transition dipole moment \mu_{1s-2p}= 4.2 eA were found

    Diffusion behavior of water in polyamide 6 organoclay nanocomposites

    No full text

    Non-destructive evaluation by terahertz spectroscopy for penetration of acid solutions into epoxy resin

    No full text
    Epoxy resins are used as high-performance thermosetting linings to protect substrates under corrosive environments. However, in a severe corrosive chemical solution, such protective layers may degrade with long time due to penetrations of solvent and solute molecules into resin network. In this regard, the terahertz time-domain spectroscopy (THz-TDS) is a promising tool for non-destructive evaluation of the penetrant amounts due to high transparency of such plastic materials and high sensitivity to the molecular vibrations in terahertz spectral range. In this work, the complex refractive indexes n and Îș of epoxy specimens were measured after immersion into sulfuric acid solutions and compared with penetrated mass fractions of water and acid ions. It was found that n and Îș depended linearly with water and sulfuric acid mass fraction in specimens, and Îș of sulfuric acid immersed specimens was lager at higher frequency. While the calculated ΔÎș agreed well with THz-TDS measurement by THz-TDS, the calculated Δn was higher than the measurement. The difference may be attributed to the water and sulfuric states in the specimen

    Performance of epoxy-nanocomposite under corrosive environment

    No full text

    Structural Investigation and Indium Substitution in the Thermoelectric Mn2.7Cr0.3Si4Al2−xInx Series

    No full text
    International audienceFollowing the recent discovery of the promising Mn2.7Cr0.3Si4Al2 thermoelectric compound (having, e.g., automotive, industrial, and solar conversion applications), structural characterization by x-ray single-crystal diffraction analysis has been performed. This layered material is composed of two distinct crystallographic sites where both (Mn, Cr) and (Al, Si) are randomly distributed. The deduced crystallographic parameters were then confirmed by powder x-ray diffraction analysis through a temperature dependence of the phase stability, showing at the same time chemical stability up to 873 K. Taking into account the two distinct crystallographic sites highlighted, samples possessing two guest elements, one on each site, were then synthesized to improve the thermoelectric properties. A solid solution is found in the system Mn2.7Cr0.3Si4Al2−xInx with x varying from 0 to 0.2. Thus, double-substituted samples were studied by x-ray diffraction, electrical, and thermal measurements. The present paper describes and discusses the experimental results obtained. © 2016, The Minerals, Metals and Materials Society

    Polymer electrolyte liquid crystal mixtures as phase-dependent thermoelectric materials

    No full text
    Organic thermoelectric materials have gained a trajectory in recent years given its advantages of processability, low cost and flexibility. In this paper, polymer electrolyte liquid crystal (PELC) mixtures composed of polyvinyl alcohol, potassium iodide, and 4-Cyano-4'-pentylbiphenyl (5CB) liquid crystal are fabricated, the 5CB acts as a ‘temperature switch’, i.e., a strong correlation between the thermoelectric properties and the transition from Ne-Iso transition of the 5CB, is observed. The electrical conductivity and Seebeck coefficient of the PELC mixtures both decrease above the Ne-Iso transition temperature. This thermoelectric behavior is discussed in terms of the carrier concentration, carrier mobility, and order-disorder transition
    corecore