1,141 research outputs found

    La bella del interno

    Get PDF
    Not Include

    Anisotropic Curvature Flow of Immersed Networks

    Get PDF
    We consider motion by anisotropic curvature of a network of three curves immersed in the plane meeting at a triple junction and with the other ends fixed. We show existence, uniqueness and regularity of a maximal geometric solution and we prove that, if the maximal time is finite, then either the length of one of the curves goes to zero or the L2-norm of the anisotropic curvature blows up

    Voltage-controlled electron-hole interaction in a single quantum dot

    Full text link
    The ground state of neutral and negatively charged excitons confined to a single self-assembled InGaAs quantum dot is probed in a direct absorption experiment by high resolution laser spectroscopy. We show how the anisotropic electron-hole exchange interaction depends on the exciton charge and demonstrate how the interaction can be switched on and off with a small dc voltage. Furthermore, we report polarization sensitive analysis of the excitonic interband transition in a single quantum dot as a function of charge with and without magnetic field.Comment: Conference Proceedings, Physics and Applications of Spin-Related Phenomena in Semiconductors, Santa Barbara (CA), 2004. 4 pages, 4 figures; content as publishe

    Voltage-Controlled Optics of a Quantum Dot

    Full text link
    We show how the optical properties of a single semiconductor quantum dot can be controlled with a small dc voltage applied to a gate electrode. We find that the transmission spectrum of the neutral exciton exhibits two narrow lines with 2\sim 2 μ\mueV linewidth. The splitting into two linearly polarized components arises through an exchange interaction within the exciton. The exchange interaction can be turned off by choosing a gate voltage where the dot is occupied with an additional electron. Saturation spectroscopy demonstrates that the neutral exciton behaves as a two-level system. Our experiments show that the remaining problem for manipulating excitonic quantum states in this system is spectral fluctuation on a μ\mueV energy scale.Comment: 4 pages, 4 figures; content as publishe

    Optical detection of single electron spin resonance in a quantum dot

    Full text link
    We demonstrate optically detected spin resonance of a single electron confined to a self-assembled quantum dot. The dot is rendered dark by resonant optical pumping of the spin with a coherent laser. Contrast is restored by applying a radio frequency (rf) magnetic field at the spin resonance. The scheme is sensitive even to rf fields of just a few micro-T. In one case, the spin resonance behaves exactly as a driven 3-level quantum system (a lambda-system) with weak damping. In another, the dot exhibits remarkably strong (67% signal recovery) and narrow (0.34 MHz) spin resonances with fluctuating resonant positions, evidence of unusual dynamic processes of non-Markovian character.Comment: 4 pages, 5 figure

    Absorption and photoluminescence spectroscopy on a single self-assembled charge-tunable quantum dot

    Get PDF
    We have performed detailed photoluminescence (PL) and absorption spectroscopy on the same single self-assembled quantum dot in a charge-tunable device. The transition from neutral to charged exciton in the PL occurs at a more negative voltage than the corresponding transition in absorption. We have developed a model of the Coulomb blockade to account for this observation. At large negative bias, the absorption broadens as a result of electron and hole tunneling. We observe resonant features in this regime whenever the quantum dot hole level is resonant with two-dimensional hole states located at the capping layer-blocking barrier interface in our structure.Comment: 6 pages, 6 figure

    Dynamic nuclear spin polarization in resonant laser spectroscopy of a quantum dot

    Full text link
    Resonant optical excitation of lowest-energy excitonic transitions in self-assembled quantum dots lead to nuclear spin polarization that is qualitatively different from the well known optical orientation phenomena. By carrying out a comprehensive set of experiments, we demonstrate that nuclear spin polarization manifests itself in quantum dots subjected to finite external magnetic field as locking of the higher energy Zeeman transition to the driving laser field, as well as the avoidance of the resonance condition for the lower energy Zeeman branch. We interpret our findings on the basis of dynamic nuclear spin polarization originating from non-collinear hyperfine interaction and find an excellent agreement between the experimental results and the theoretical model
    corecore