1,793 research outputs found

    Spatial filtering in multichannel magnetoencephalography

    Get PDF
    Partial differential equations in boundary-value problems have been studied in order to estimate the influence of several geometrical and physical parameters involved in the outward transmission of the brain's magnetic field. Explicit Green kernels are used to obtain integral forms of generalized solutions which can be deduced from each other, as expressed over concentric spherical surfaces. That leads to numerical applications dealing with the radial component of the magnetic field. From this study, a new spatial filtering is proposed as a possible improvement in two-dimensional magnetoencephalographic mapping using large multisensors

    The origin of very wide binary systems

    Get PDF
    The majority of stars in the Galactic field and halo are part of binary or multiple systems. A significant fraction of these systems have orbital separations in excess of thousands of astronomical units, and systems wider than a parsec have been identified in the Galactic halo. These binary systems cannot have formed through the 'normal' star-formation process, nor by capture processes in the Galactic field. We propose that these wide systems were formed during the dissolution phase of young star clusters. We test this hypothesis using N-body simulations of evolving star clusters and find wide binary fractions of 1-30%, depending on initial conditions. Moreover, given that most stars form as part of a binary system, our theory predicts that a large fraction of the known wide 'binaries' are, in fact, multiple systems.Comment: 4 pages, 1 figure, to appear in the proceedings of IAU Symposium 266, eds. R. de Grijs & J.R.D. Lepin

    Binaries and the dynamical mass of star clusters

    Full text link
    The total mass of a distant star cluster is often derived from the virial theorem, using line-of-sight velocity dispersion measurements and half-light radii, under the implicit assumption that all stars are single (although it is known that most stars form part of binary systems). The components of binary stars exhibit orbital motion, which increases the measured velocity dispersion, resulting in a dynamical mass overestimation. In this article we quantify the effect of neglecting the binary population on the derivation of the dynamical mass of a star cluster. We find that the presence of binaries plays an important role for clusters with total mass M < 10^5 Msun; the dynamical mass can be significantly overestimated (by a factor of two or more). For the more massive clusters, with Mcl > 10^5 Msun, binaries do not affect the dynamical mass estimation significantly, provided that the cluster is significantly compact (half-mass radius < 5 pc).Comment: Comments: 2 pages. Conference proceedings for IAUS246 'Dynamical Evolution of Dense Stellar Systems', ed. E. Vesperini (Chief Editor), M. Giersz, A. Sills, Capri, Sept. 200

    Frequency-dependent transport through a quantum dot in the Kondo regime

    Full text link
    We study the AC conductance and equilibrium current fluctuations of a Coulomb blockaded quantum dot. A relation between the equilibrium spectral function and the linear AC conductance is derived which is valid for frequencies well below the charging energy of the quantum dot. Frequency-dependent transport measurements can thus give experimental access to the Kondo peak in the equilibrium spectral function of a quantum dot. We illustrate this in detail for typical experimental parameters using the numerical renormalization group method in combination with the Kubo formalism.Comment: 4 pages, 4 figure

    The dynamical fate of planetary systems in young star clusters

    Full text link
    We carry out N-body simulations to examine the effects of dynamical interactions on planetary systems in young open star clusters. We explore how the planetary populations in these star clusters evolve, and how this evolution depends on the initial amount of substructure, the virial ratio, the cluster mass and density, and the initial semi-major axis of the planetary systems. The fraction of planetary systems that remains intact as a cluster member, fbps, is generally well-described by the functional form fbps=f0(1+[a/a0]^c)^-1, where (1-f0) is the fraction of stars that escapes from the cluster, a0 the critical semi-major axis for survival, and c a measure for the width of the transition region. The effect of the initial amount of substructure over time can be quantified as fbps=A(t)+B(D), where A(t) decreases nearly linearly with time, and B(D) decreases when the clusters are initially more substructured. Provided that the orbital separation of planetary systems is smaller than the critical value a0, those in clusters with a higher initial stellar density (but identical mass) have a larger probability of escaping the cluster intact. These results help us to obtain a better understanding of the difference between the observed fractions of exoplanets-hosting stars in star clusters and in the Galactic field. It also allows us to make predictions about the free-floating planet population over time in different stellar environments.Comment: 14 pages, 9 figures, accepted for publication in MNRA

    Electron Pair Resonance in the Coulomb Blockade

    Full text link
    We study many-body corrections to the cotunneling current via a localized state with energy ϵd\epsilon_d at large bias voltages VV. We show that the transfer of {\em electron pairs}, enabled by the Coulomb repulsion in the localized level, results in ionization resonance peaks in the third derivative of the current with respect to VV, centered at eV=±2ϵd/3eV=\pm 2\epsilon_d/3. Our results predict the existence of previously unnoticed structure within Coulomb-blockade diamonds.Comment: 5 pages, 4 figure

    Quantum Phase Transition in a Multi-Level Dot

    Full text link
    We discuss electronic transport through a lateral quantum dot close to the singlet-triplet degeneracy in the case of a single conduction channel per lead. By applying the Numerical Renormalization Group, we obtain rigorous results for the linear conductance and the density of states. A new quantum phase transition of the Kosterlitz-Thouless type is found, with an exponentially small energy scale T∗T^* close to the degeneracy point. Below T∗T^*, the conductance is strongly suppressed, corresponding to a universal dip in the density of states. This explains recent transport measurements.Comment: 4 pages, 5 eps figures, published versio

    Non-invasive detection of molecular bonds in quantum dots

    Get PDF
    We performed charge detection on a lateral triple quantum dot with star-like geometry. The setup allows us to interpret the results in terms of two double dots with one common dot. One double dot features weak tunnel coupling and can be understood with atom-like electronic states, the other one is strongly coupled forming molecule-like states. In nonlinear measurements we identified patterns that can be analyzed in terms of the symmetry of tunneling rates. Those patterns strongly depend on the strength of interdot tunnel coupling and are completely different for atomic- or molecule-like coupled quantum dots allowing the non-invasive detection of molecular bonds.Comment: 4 pages, 4 figure

    Negative differential conductance in quantum dots in theory and experiment

    Get PDF
    Experimental results for sequential transport through a lateral quantum dot in the regime of spin blockade induced by spin dependent tunneling are compared with theoretical results obtained by solving a master equation for independent electrons. Orbital and spin effects in electron tunneling in the presence of a perpendicular magnetic field are identified and discussed in terms of the Fock-Darwin spectrum with spin. In the nonlinear regime, a regular pattern of negative differential conductances is observed. Electrical asymmetries in tunnel rates and capacitances must be introduced in order to account for the experimental findings. Fast relaxation of the excited states in the quantum dot have to be assumed, in order to explain the absence of certain structures in the transport spectra.Comment: 4 pages, 4 figure

    Schur and Weyl functors

    Get PDF
    • …
    corecore