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0. GENERAL INTRODUCTION

The Schur and Weyl functors are the functorial generalisation of the
Schur respectively Weyl modules in the representation theory of general
linear groups, this also explains their names. Both types of functors are
defined over any commutative ring with 1, and they are parametrised by
Young diagrams. They were defined and studied in [20, 1], further work
can be found in [2, 5].

The Schur and Weyl functors are endofunctors on the category of finitely
generated projective modules, and they are universally defined, ie., they
commute with change of base ring. Special cases of Schur functors are the
symmetric and exterior powers, in fact these are the extreme cases in some
sense. Weyl functors are the duals of Schur functors in a natural sense, the
divided power is the dual of the symmetric power in this sense and the
exterior power is self-dual. Both Schur and Weyl functors also arise
naturally in the study of exterior and symmetric powers.

To illustrate the relevance of Schur and Weyl functors in multilinear
algebra and in general representation theory of groups, we mention the
following: For each Young diagram there is a special universally defined
natural transformation from the Weyl to the Schur functor which can be
characterised up to sign. In case the base ring contains the rationals it is
in fact an equivalence. The images of these transformations constitute over
an infinite field a complete irredundant system of irreducible polynomial
endofunctors on the category of finite dimensional vector spaces. And when
applied to the natural representation of the endomorphism monoid, or the
automorphism group, of a finite dimensional vector space, they give a com-
plete set of irreducible polynomial representations of this monoid respec-
tively group. (For the definition of polynomial functors and representations
see [ 18, 13].) Moreover when the base field is finite similar results hold for
the natural transformations for a certain subset of the set of all Young
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diagrams. And in this case the polynomial condition is not a restrictive
condition. The above results will be proved in a planned follow up of this
paper; see however [17].

Since the Schur and Weyl functors are universally defined general results
about them rely on combinatorial observations. They are elementary in fact
and go back to the 19th century. The combinatorics we need to deal with
Schur functors is precisely given by letter place algebras, as developed in
[12, 7, 8]. For Weyl functors we shall develop another, but in many
respects similar, kind of letter place algebra based on exterior powers, as
opposed to symmetric powers which are used for ordinary letter place
algebras. For recent generalisations of these algebras see [A|, A,, A;].

This paper is divided into two chapters. In the first chapter we construct
explicit universal functorial generalisations of the classical branching and
Clebsch~Gordan rule for Schur modules, generalising results in [1,2, 5].
In our setup the Clebsch-Gordan rule is a special case of the branching
rule. The corresponding rules for Specht modules for the symmetric groups
(Murnaghan-Nakayama resp. Littlewood-Richardson rule) can be seen as
summands, thus generalising [8, 14].

In the second chapter we prove similar resuits but now for Weyl
functors, generalising [1, 4]. Each chapter has its own introduction.

We observe that the filtrations involving Schur and Weyl functors
constructed in the first two papers are in agreement with more general
existence theorems for algebraic groups, as in [9, 10]. Our filtrations make
perfect sense over non-commutative rings with 1 provided one restricts
oneself to two-sided summands of finite direct sums of copies of the base
ring (as opposed to finitely generated projective modules).

The results in this paper form part of the author’s thesis [15].

Some general notation:

A: a commutative ring with 1.

A-mod: the category of finitely generated projective A-modules.
M, N: elements of A-mod.

No: Nu {0}.

n: an element of N,

A", 8", D": the nth exterior, symmetric respectively divided power seen
as endofunctors on A-mod.

S,: the symmetric group on {1, 2, .., n}.
M(n, A). the monoid of n x n matrices over A.
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I. FILTRATIONS INVOLVING SCHUR FUNCTORS

As mentioned in the general introduction, we shall, in this first chapter,
use letter place algebras as the combinatorial devise to derive results for
Schur functors. Basic are the results that a Schur functor is universally free
on free modules and that the symmetric power applied on a tensor product
admits a universal filtration with as subquotients tensor products of Schur
functors. This latter results generalises Cauchy’s determinental formula and
shows that Schur functors arise naturally in the study of symmetric powers.
Typical consequences are a filtration for tensor products of symmetric
powers and for “good” base rings also, see [16], a formula for a Schur
functor applied on a tensor product of symmetric powers (so-called (outer)
plethysms).

We shall give a universal filtration for a Schur functor applied to a direct
sum with a subquotients tensor products of Schur functors again.
Immediate consequences are the branching and Clebsch-Gordan rule for
Schur modules for general linear groups.

1.1. The Combinatorics

We start by summarising the results for letter place algebras we shall
need and, to make this possible, a checklist for the notation.

[7,pp. 163-1651: { >, k, a =k, S,, i—k, a<B,a=1B, T:, T, ~.,
€ £, T (<m), STH<m), THa), STHa), (S, T), BT*(a, B), SBT‘ o, ),
BT(a, B), SBT(a, B), A,,", (S|T), D",(a’,a), Dp/(b', b). In case « |= k, or
Ak, we shall allow k to be zero. A proper partition is called a Young
diagram. When 1 —0 we put A= (0) and 4, =0. The associate of a Young
diagram 4 shall be called the conjugate of 1 and is denoted by 1. When
A0, 7+—0. The lexicographic order for partitions shall be extended: if
af=k and B =/ then a<f means k</ or (k=/ and a<p). For any
partition «, T, and T shall have the obvious meaning. We view 4,” as a
left A[End ,(4™)x End ,(A4")]-algebra in the obvious way, extending the
action of Gi(m, A)x Gl(n, A) in[7].

[7, p. 169]: By C,(S) and C(T) we shall mean the decoulered Capelli
operators 6o Cp(T).

(7, pp- 172, 173T: (B T), (S| @), (81| @). By D (S, T,), Dp(T, T}),
etc, we shall mean the decoulered operators 6o D, (S, T,) respectively
§oDu(T, T,).

[7, p. 186]: For Se T(1"), P(S) and Q(S) denote H(S), respectively
V(S)".

[8, p. 163]: T™



80 FRANK M. KOUWENHOVEN

[8, p. 167]: v\ 4, T (<m), T (a), ST (<m), ST (), 7,. We
shall delete the brackets in (v) > (1), (v)\(A), T|,,, and T|(,\ (- Further-
more, BT *(«, §), SBT"** (m, f§), etc., shall have the obvious meaning,
similarly for 7T',,,, T,,;, Cp(T,\;), D.(S, T, ;). etc. In the following cases
we allow 4 to be any partition: v> 4, v\ 4, T"*(...), BT"*(..., ...), T, , and
T, ;. The orders <, and <, shall be extended to skew shapes v\ 4 in the
obvious way. Since v\ 4 can be seen as a partition as well, namely (v, — 4,,
Vy— A2, 0 V7~ A3, VI 415 V5), bideterminants for bitableaux of skew
shape make perfect sense, as well as symmetrised bideterminants.

We have summarised the results we use about bideterminants, and
operators on them, in the following theorem. (All bideterminants are
computed in a letter place algebra where they make sense.

THEOREM 1.1. Let r, se Ny, let v and 1 be Young diagrams with v2 4,
let y = n, 6 = nand let (U, T)e BT Ay, 6).

(a) (Straightening, [19] or [12]). Suppose A= (0) and ¥, =2 and
letie{1,2,.,9,—1}andje {1,2,..,v,,}. Write the ih and (i + 1)th row
of U like this, where d=v,, , —/:

a4y Ay - 4py Ciyq Ciyp ot Gy
€, € -+ ¢y ¢ biby, --- b,

Suppose one has

(11<a2< <aj71<cj+l<cj+2< <cv,‘+l
VAN A Vv

<< <1< ¢ < by <o <by
then

2 sgn(e) - (U | T) e (V| W)|(V, W)e BT?(y, §) for some p —n

ceER

withp>v), .

Here R={o€e S, ,|o(1)<a(2)< --- <o(j) and o(j+1)<o(j+2)< --- <
a(v;+1)} and U’ is the tableau obtained from U by replacing, in the ith
and (i + 1)th row, ¢, by ¢, for all /. Observe that U’ <, U if 6 # 1.

In case T=T, the span is zero.

Similar results hold for the place side.
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(b) ([19] or [12]) If A=(0) then
(UIT)el(VIT)VeST'(»), V<, Uy,
+ (VIW)(V, W)e SBT?(y, 6)for some pr—nwithp>v), | .

In case T=T, the second span is zero.
Similar results hold for the place side.

{c) (Compare [12].) Suppose U is standard. If 4 = (0) or the entries
of U are mutually distinct then C (U)U|T)=(T,,|T). If A=(0) and
U'eST(y) with U'>_ U then C,(U)U'|T)=0.

Similar results hold for the place side.

(d) ([197 or [12]) {(SID)I(S,Nel),,_,SBT" (<r, <s)} is an

A-independent system.

(¢) (Compare [1], or see below.) Put a=(4,4,,.., 4z, 07~%),
B=v\A as partitions. Suppose there is an ie {1,2,.., ¥ —1} such that
B:#0, p;,.1#0, and v, >a;, (ie, the ith and (i+ 1)th and (i + 1)th row
meet). Let je{l,2, .., f,,,} with j>a,—a;,, and write the ith and

(i+ 1)th row of U like
a; a, a, Cj+l Cj+2 C/

€€y = Gy Ci_eyr "0 Gy G b by, -+ by s

where d=ﬁi+1 _ja e:j— 1- (ai_ai+l) andfzﬁi+j_e'
Suppose one has

a < a4 <---< a, <C,~+1<Cj+2< <Cf
A A N 1

<< G <1< - <0 < ¢ < by <by< - <by,
then 3, rsgn(a)(U°| T, ;) =0. (This generalises (a) in case 1= (0).)

Here R={o€eS,|a(1)<a(2)< --- <o(j) and a(j+1)<a(j+2)<--- <
o(f)} and U’ is the tableau obtained from U by replacing, in the ith and
(i+ Dth row, ¢, by c,, for all L. Observe that U’ <, U for ¢ # 1.

Always, (U|T,,,)e<(V|T,,)l VeST(y), V<, Uz,

And {(S|T,,,)|SeST"\* (<r)} is an A-independent system.

Similar results hold for the place side.

(f) (Compare [6], [7], and [1], see the second chapter for the
relevance of the latter.) Put a=(1,7,,.,1,,0" %) and B=7\7%, as
partitions. Suppose there is an i€ {1, 2, .., v; — 1} such that 8,#0, B, , #0
and 7, >q, (ie, the ith and (i + 1)th column meet). Let je {1, 2, .., B, ,}
be such that j>o,—a,,, and let k€ {0, 1,2, .., §,, ; —/j} and write the ith
and (i + 1)th column of U like



82 FRANK M. KOUWENHOVEN

¢y
&)

a, Ci e

a;

a, Ci_y d=,3.'+1_(j+k)
Civk+1 Ci where e=j_1_(ai—ai+l)‘
Civks2 . f=ﬂi_e+j+k

: Civk

b,
b,
by
Cr
Suppose one has
8]
N
2
N
N
al < Cjﬁe
A N
a; <C_,4
T
N AN
a, < ¢_,
A
Ci+k+1> cj
N I
Civk+2 Civ1
n I
l
Citk
A
by
N
b,
N
N
N by
Cr

Then ¥,.or,-([Q] | T)=0.
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Here Q is a transversal for S,/S,, where m=b, and ee(Ng)™ is
such that ¢,=# {tef|c, =1} all Iem. And °U is the tableau obtained
from U by replacing, in the ith and (i + 1)th column, ¢, by ¢, for all
tef. Observe that a,<c;,,,, and ‘U<, U for a¢S,. In order to define
r,eZ-1,let A, °A, B, °Be (N,y)™ be such that 4,= # {t]a,=1}, °A,=
#{tef\ j+klc =1}, B)=#{ted|b,=1}, and °B,= # {te j+k|c,,=1},
for /e m. Then

RN
te {at,ap....ae} A/ le {b1,by,...04} Bl

Moreover ([ | T)e (8] |T|SeST, (y), S<.U>;z.,,, and
(@ T)el (| W) WeST(8), W<, T, .

Also, {[5]| 7*"v\,1)|SeST“\’1 (<r)} is an A-independent system.
Similar results for the place side.

(g) (compare [7)) DU, T, (T, ;|T)=(UIT),

D, (U, Tv\i)(Tv\).| n)=(|7).
Similar results hold for the place side.

Remark. The reader is not supposed to understand the proofs of the
above results except the following. The formula in (e) implies the result for
(U|T,,,) and the formula in (f) implies the first result about (U|7,, ,). To
see this observe that when in a bitableau there is a tableau with two equal
elements in one of its rows then its bideterminant is zero. Also rearranging
in a tableau, in a bitableau, the elements of one of its rows in increasing
order makes the tableau smaller, if something has happened, and changes
the bideterminant by the signature of the permutation used. Hence, for
arbitrary U, (U|T,,;)= +£(W|T,;), where W<, U and ecither W is
standard or the formula in (e) applies to W. In this last case the formula
implies (W|T,,,)e{(V|T,;)|V<, W and either V is standard or the
formula is () applies to V'), ,,. Hence, by an induction argument

(UIT, ) eX(VIT ) VeSTM(y), V<, Uy,

Concerning (f) one can argue in a similar way with the difference that now
the column lexicographic order is important and rearranging elements in
columns of the symmetrised tableau does not change the symmetrised
bideterminant.

We shall also assume that the reader is able to prove (g).
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We shall now make the connection between [1] and letter place
algebras. Let vi—n, ae Ny, a<n, A+—a. Put a=7\7 and f=v\ 4, as par-
titions. Define natural transformations @ L, A% — (—)®"~ 9> @’ | h
as follows. Define the first one by (m; ;€ M all i, j):

® (m,,®m;,® --- @ m; ) — 2 (sgn(a) ® M g1y & -+ ®mi,a,(a,')>'

i=1 cE Sy

And ®; x,, for x,;e M®* all i<v,, means the image of x, ®x,® - @ x,,
in M®"~%_ Define the second one by (m,e M all i):

V1
m@m® --- @m,_,—> &Q (my ;j-my ;- -+ -mg ;) where for all (i, j),
j=1

m; j=my, ;y with 10, ) =255) " ap +j— (5 ) — %ugipy)» Where n(i, j)=
v;— B;+1i. To understand this second map imagine the elements m,, m,, ...,
m,_ , are the entries of a tableau of shape ¥\ 7,

”11"’12 e ma1
—1
My 4 - m Vi
" e where c= ) w.
i=1
mey, - Mmy_,

Then the second map constructs for each column the product (in the
symmetric algebra) of its entries and then constructs the tensor products of
the results.

Let us denote, as in [1], the composition of the above transformations
by d;,; then by Theorem 1.1 (c) there is a commutative diagram, for each
re Ny,

dy\7(A")
—

AHA)R@AHA)® -+ @A™ (A") SPAT)® --- ®SP(47)

fl; gF

(ST SeST (<Y, < (51718, T)e BT(<r, B)) as

where, of course, f and g are the natural A-linear maps defined by

By Ry ot My

v
RyMan o0 Mag, | 2
@ (e,,“ A en,-‘g A A en,',,i)H : . TV\I ’

i=1

LT TR (R
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respectively
my;|Jj
vi ;
m,itJ
® (e'mJ gt emﬂ/.j) = l—[ . -l
i=1 j :
mﬂj‘j 7]

Here n,;, m, ;e {1,2,..,r} all i,j a‘nd (e, e,, .., e,) 1s the natural basis
of A”. By Theorem 1.1(e), Im C,,(Tﬁ\z)z((S|T.\;)|SeST“\I (<r)> 4,

v

which is (universally) free by Theorem 1.1(e). Slightly generalising [1]:

DeriNITION. Let v and 4 be Young diagrams with v> 4, then
S*)\* :=Im(d;, ; : A-mod > A-mod), and S’}* shall be called the (skew)
Schur functor for the (skew) diagram v\ 1 over A.

Observe that the image of S*\* is indeed in A-mod because S%)\* is a
functor and S'\*(M) is free of finite rank when M is. Also B® S'\* =
SP*(B®-) for a unitary commutative A4-algebra B. We shall drop the
suffix “4” in S*\* when there is no danger of confusion. Clearly $*(4™)=0
when 1, > m.

ExampLEs. S§'=S" and S =~ A" (the “extreme” cases).

Remark. S"*(A") is the Schur module L; 5(4") in [1], it corresponds
to schur (¥\7) in [3], and, if 4= (0), to #"*(4) in [7]. Also §*= A" in the
notation of [20]. We use S*\*(4") rather than S°\*(4") to stay in line with
the notation for Schur modules (or: dual Weyl modules, or: induced
modules) in the representation theory of G/(r, A), where A" is the natural
representation of Gl(r, A).

Consider the diagram involving d;, ;(4") for r=n—a.

Clearly’ <(S| TG\I) | Se TV\I(ln*a)>A = A[Sn—a] ® A[S,,]sgnA as A[Sn~a]'
module, where ,4 is one-dimensional representation of S, with as
character the signature. Also {(S|T)|(S, T)e BT(1" 4 B)> = A[S,_.]1®
arss1eivAd as A[S,_,]-module where ;A is the trivial representation
of Sy.

CoNVENTION (Notation as Above). Weshallidentify A[S, ,1® 4rs,7¢4

with the subspace of &@;A4%(4" %) corresponding to {(S| T il
SeT™*(1"~*)),, via f. Similarly we identify 4[4, ,1® 4rs,uvd With
the subspace of &, S#(A"~°) corresponding to <(S|T)|(S, T) e
BT(1"~% B)) 4-

So there is a commutative diagram:

A[Snfa:'@A[S,](sgnA) L\z—’ A[Snfa]®A[Sﬂ](trivA)

*
Cp(TynDy
_—

(S| Ty )| SeSTNV(17-9)) SIT)I(S, T)e BT(1"7%)) 4.
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By Theorem 1.1(e), Im CP( n2)=<(S|Ty ;) Se STV (17~ “)> 4 which is
(universally) free by Theorem 1.1(e).

DerINITION. Let v and A be Young diagrams with v> A, then
. i(4) :=Im(e; ;), and ¥ ,(4) is called the (skew) Specht module of
S, _, for the (skew) diagram v\ A over A. It is denoted by S*\* in [14] and,
when 4= (0), by #(4) in [7].

ProPOSITION 1.2 (Compare [1] and [20]). Let v and 1. by Young
diagrams with v2 A. Put a=(4,, A, .., 43,07 ") and B=v\4, as parti-
tions. Then ker d,. ,(M) is generated by all the elements:

Y, sgn(a)(x; ®x,® -+ ®x,_,

oceR

@@ Ay A oo A ACG ) A Coiray) A A Corpy)
® (Co1) A Coy A o+ ACuy AbyAbyA - Aby)
®xi+2®"'®x\71),

where i, j, 0, d, e, and f are as in Theorem 1.1(e), x, € AP«(M) for all k, and
Ay, Azy ey Ay, €1y Coy oy Cpy by by, Bye M.

Proof. Consider the diagram involving d,.,(4") and C,,(Tv\ ;) By
Theorem 1.1 (parts (c) and (e)), ker Cp(7,,,) contains the elements
>, sen a)(U"ITV\A) But by Theorem 1.1(e), Im(CP(TM)) has as basis
{(S|T,, ;)| SeST"* (<r)}. Hence by the remark following Theorem 1.1,
ker Cp(f"v\ ;) is generated by the elements ngn(a)(U"]f”V\ ;). By the
commutativity of the diagram the elements in Proposition 1.2
generate ker(d,, ,(M)), in case M =A". The general case now follows
immediately. ||

1.2. The Filtrations

The Schur functors turn up in a natural way studying symmetric
powers. For this, first observe that there is an isomorphism of
{graded) A[End ,(A4™)x End ,(A4")]-algebras 4,," 3 S(A”® 4A") given by
(i1 j)—>e;®f; (iem, jen), where (e, e, ..., e,,) respectively (f1, fo, s [)
are the natural bases of 4™ and A" Here S(A™® A") is, of course, the
symmetric algebra of 4™ ® A"

ProposITION 2.3 (Slight Refinement of [1], See Also [12]). The
functor S"(-®-): A-mod x A-mod — A-mod admits an explicit filtration by
subfunctors:

S"(—@—):L“lDL”ZD DL”H1=0
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with leN, p' <u’< ... <y’ are all Young diagrams for n and for all ie]
there is an equivalence

i+l

S*® SF 5 L*/L*

Moreover for each vi—n, @™ 8" : A-mod - A-mod admits an explicit
filtration by subfunctors:

® S"=K">K"> ... oK""'=0

1

withmeN, A' <A>< --- <A™ are all elements of {A—n|2=v} and for all
iem there is an equivalence,

SIi®Fi:’KAi/KAi+l,

where F,; is the constant functor with value the free A-module of rank
#ST*(v). In case v=(1"), S, acts by natural transformations on
®; S” = (-)®" (by permuting the tensor factors), and the K* can be chosen
to be S, -invariant such that the S,-action on K’”/K’Ii+l corresponds to an
action on F; turning its value into the $i(A).

Proof. Let ur—nandlet 9,=¢, (M, N): @, A“(M)Q @, A*(N)
— §"(M ® N) be the natural 4-homomorphism defined by

QmAamaon - Am )RR (nyAn A - A n;u)

i i

= H det((mz“?‘@ni,s)r,s‘s;z,)

for m;,e M and n, ;e N all i, r,and s.
When M and N are A-free modules of rank r respectively s, then ¢,
corresponds to the A-linear map (see above the definition of S¥\*):

USIT,)ISe T (<r))® (T, T Te T (<5)) 4

- <(S| T)[(S, T)e |J BT*(<r, <s)>
A

ur—n

definedby (S|T,)®(T,| T)— (S| T).

Moreover ¢, (x®y)e3.., Im¢, for every generator x of kerd, (M)
described in Proposition 1.2 and every ye ®,A%(N), by specialising
Theorem 1.1(a).

Similarly ¢, (x®y)eX. ., Im ¢, for every generator y of ker d,(N), as
described in Proposition 1.2, and every xe ) ; 4A4(M).

607/90/1-7
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Hence, the quotient homomorphism ¢, : ®; A“(M)® Q; A*(N)—
S"(M®N)/Y..,Ime, factorises through a natural map c,: SH(M)®
SHN)> S"MQN)/Y..,Im¢p,. When M and N are free A-modules of
rank r respectively s, the ¢, coresponds by Theorem 1.1(b) to the 4-linear
map,

(SIT)|SeST (<)) 4@ UT, I T)| Te ST* (<5)) 4

—><(S| (S, T)e | ) SBT (<r, <s)>

TS H

definedby (S|T,)Q(T,|T)—(S|T).

This however is by Theorem 1.1(d) an isomorphism onto its image, It
follows that c, is an isomorphism onto its image in general. Observe that
®1» is surjective hence 3, Im ¢, = S"(M ® N). Observe that the definition
of ¢, actually defines a natural transformation @,: @, 4*(-)®
&, 4*(-) > S"(-®~-). Hence, c, generalises to a natural transformation
C,: SPQS* - S"(-®-)/X.~,Im &, which is an equivalence onto its
image. Hence, put L*=3%,.,Im &, then the L* make up the desired
filtration.
Concerning ); S observe that there is an equivalence
@ ® Sai:}S”(_@AH)
(a0 o) =R i=1

defined for M by 3, ®, 172, m; ;> 2. 1, (m,;®e,), where m, ;e M all
i,j and (e, e,, .., €,) is the natural basis of A4". For M = A" this map
corresponds to the decomposition according to place content,

@ (SITI(S, T)e BT)e BT (<r, 1)} 4

= (1M1, 1e U 81 (<r <)

ur—n A

From the construction of the filtration for §"(-®-) it now follows that the
desired filtration for &),;S” is obtained as the “summand” of the one
for §"(-®A4"), the summand corresponding to a=v. The dimension of
the values of the constant functors follows from Theorem 1.1 (parts (b)
and (d)).

The filtration for v=(1") given above has the desired properties. [

Remark. As a direct summand of the filtration for ); S*(A4") there is
a filtration for A[S,]® 4rs,juwiv4, corresponding to latter content (1%),
which is in fact Young’s rule in [7]. The special case v=(1") yields a
bimodule filtration for the group ring A[S,].

The way skew Schur functors arise is:
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TuroreM 14. Let vi—n, Le A-mod.

(a) (Slight refinement of [1].) There are explicit subfunctors F,
for ke{0,1,2,..,n} of S'(-@®-):A-modx A-mod —» A-mod such that
@i _o Fe=S"(-@®-). And such that for each k, F, admits an explicit filtra-
tion by subfunctors,

Fi=G">G">...¢"" =0

with l(k)eN, ' <A?< --- < A"® are all elements of {A—k|¥> A} and for
all iel(k) there is an equivalence:

SI’.@SV\I,:’)G'U/GlHI,

(b) Suppose there is an exact sequence 0 > N> M —» L -0 in A-mod

then S*(M) admits a natural explicit filtration,
I+1

S(M)=P- > P> ...opH =0

with leN, u'<p?< ... <y are all elements of I=\J;_, {p+—k|¥>u}
and for all i€l there is a natural isomorphism,

ST(N)® S*\F(L) > P¥/P*"".

Here “natural” means natural with respect to commutative diagrams

0 — N — M > L > 0
J 1 J in A-mod with exact rows.
0 > N’ M L > 0

Proof. (a) For ke{0,1,..,n} put Pk)={aeN)' T  a,=k,
;< 7, all i}. For each a e P(k) we shall define a natural homomorphism,

vy

db,=db(N,L): @ A%(N)® ® A(L)— S (N® L),

i=1 i=1

where f,=7,—a; all i. To do this let b,: @}., 4(N)@ ® ., 4%(L) -
&L, A" (N® L) be the natural 4-homomorphism defined by

® Py AR A - A ni,a,')®® (i~ o Alg)

= @ (11, 0) A (:20) A - A (1) A (O L) A - A (0, 1))

for n,;e Nand I, ;e L all i, .
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Now put db,=d;(N® L)ob,: R, A%(N)® ®,; A*(L) > S*(N® L), and
put Ky=3,cpu)Imdb,. The K, is clearly a natural submodule of
SN®L)and i _, K, =S"(N® L). By the following claim this sum is a
direct sum. Let k€ {0, 1, .., n} and let 2 — k be such that # > 4, then by b,
and db, we shall mean b, respectively db, with a =(4,, 4,, ..., 43, 0"~ A,

Claim 1. For all aeP(k), Imdb,c3. . . ..,Imdb, especially
K=Y, «Imdb, Moreover Y} _,Ki=@P;_, K(=S(N®L)).

Proof of Claim 1. Clearly one may assume that N and L are free
A-modules, of rank r respectively s say. But in that case db, corresponds
to the A-linear map (see above the definition of $¥\*),

((SIT,)SeT* (<)) @KV Ty ) Ve T (<9)) 4
—> (UIT) | UeT (K(r+5))) 4
defined by (S|7,)® (V| T;,,) (5t,(V)| Ty).

So the image of db, corresponds to

{(U|T;)|Ue T’ (<(r+ys)), the shape of the entries of U

which are at most ris o) ,.

By Theorem 1.1 (parts (a), (b), and (d)) the assertions follow.

Claim 2. Let Ar—k be such that >4, and put f=¥\A Then
dby(X)€X, 4 s Imdb, for all xe((®L, A*N)QKerd, (L))v
(Ker d;(N)® ® L, A%(L))).

Proof of Claim 2. We shall do the case xe ®, 4*(N)®Ker d,, (L),
the other case can be handled similarly. So let y,e A*(N) all /, and let z be
one of the generators of Ker d,, ,(L) described in Proposition 1.2, say z
corresponds to (i, j), here i refers to the ith row and j to the jth column,
see Theorem 1.1(e). Then b,(®,y,®z) looks, at first glance, like a
generator of ker dy(N@®L) for the same pair (i, j) as described in
Proposition 1.2. If it is such a generator then db,(®; y,®z) =0 so we are
clearly done then. However, this only happes when i >7,. When i <7, then
d,(®;y,®z) only involves permutations which permute elements of L
whereas the corresponding generator of Ker dj(N@® L) also involves
permutations which interchange elements of N with elements of L. But
fortunately these extra terms correspond to terms in ¥, pu) o> 4 1M b,.
Hence their dy(N@® L)-images lie in 3 ,_, .., ,Imdb, by Claim 1. But
clearly d(N®L) (b,(®Q,y,®z)+extra terms)=0, so db,(x) is in
Yk o>, Imdb, as desired.
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By Claim 1, 3, , ..,;Imdb, is a natural submodule of K, for every
Ak, for all k. By Claim 2 the quotient map &, A*(N)® ®, AP(L) -
K[> .>,Imdb, induced by db, factors through a natural
A-homomorphism:

cl:SI(N)®S"\Z(L)—>Kk/ Y Imdb,.

T—k >4
Claim 3. For all A+—k with ¥ 4, ¢; is an isomorphism onto its image.

Proof of Claim 3. Clearly one may assume that N and L are free
A-modules, of rank r respectively s say. From the proof of Claim1 it
follows that, by Theorem 1.1(b), ¢, corresponds to the map

(SIT)ISeST (K1Y@ VT, ) VeST M (K5)) 4
- {(U|T;)| Ue ST*(<(r +5)), the shape of the entries of U
which are atmost ris 1),

defined by (S| T,)® (V| T; ) (S Ty).

By Theorem 1.1, parts (d) and (e), this latter map is an isomorphism onto
its image, as desired.

Observe that the definition of db, defines in fact a natural transformation
DB, @, A(-)® ®; AP(~) > S*(-®-). Hence, K, generalises to a sub-
functor F, of S*(-®-). And ¢, generalises to a natural transformation,

C;: s1®sv\1—>Fk/ Y Imdb,,

Tk, >4

which is an equivalence onto its image. Now put G*=3__ .., Imdb, for
all A—k, ke {0, 1, .., n}, then the G*s make up the desired filtration.

(b) Let 0 N—s M—25 L 50 be the exact sequence. The map ¢
splits by an 4-homomorphism. Now using y and this splitting one can
define, in a similar way as in the proof of (a), the maps b, and db,.
However, b, and db, are not natural maps in general, and K, and
>.-:Imdb, are not necessarily natural submodules. But the first two
claims remain valid. Moreover when

0—— N — M — L — 0
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is a commutative diagram of 4-homomorphisms, with exact rows, then for
each uel and each xe @ | AH(N)® ® L A%(L),

s'eab, )=, ® ()®® A0 )[4y with

n

ye Y Y Imdb, and B=¥\p
m=k+1 aeP(m)
Hence, 3 .c; .~ ,Imdb, is a natural submodule of S*(M) for all uel and
by Claims 1 and 2, db, induces a natural 4-homomorphism,

S"(N)@S”\"‘(L)—»SV(M)/ Y Imdb,.

tel,bt>pu

Now replace ¢, and 4 in Claim 3 by this map respectively u then it remains
valid. Hence, put P*=3%,., .., Imdb, then the P* make up the desired
filtration. |

Remarks. (1) Theorem 1.4 generalises the well-known results for
exterior and symmetric powers (the cases v = (1”) respectively (n)).

(2) Theorem 1.4 can be generalised to skew Young diagrams. For
this, let me {0, 1, .., n}, A—m, v> 1 and replace S* by $**4, {0, 1, .., n} by
{mm+1,.,n}, @i_oby ®i_,» {Ar—k|T2A} by {u—k|Fou>17},
S¥ by $**and I'by UZ_,, {u—k|5>u>7}. A proof can be given in a
similar way, compare [1].

Modules for skew diagrams were defined first in characteristic zero by
prescribing their composition factors. Hence, a convincing argument for the
adjective “skew” is a universal filtration for skew Schur functors with
(ordinary) Schur functors as subquotients.

THEOREM 1.5. Let aeN, vi—n, Ar—a, suppose v2 i, and put f=v\A
(as a partition). Then S** admits an explicit filtration by subfunctors,

SV\;L;'NTIDNTZD DNTI+1=0

with leN, T'< . T?<_--- <. T are all elements of L= {TeST*(B)|pu—
(n—a), o4 (T)e ST*\*({1)} and for all i€] this is an equivalence,

S*~ NT/NT™!, where y' is the shape of T'.

Here ¢, ,: ST*(f) ~ T\A\Q) is the map defined by the following: for every
Te ST*(B) and every j< 7, the jth-column of @' ,(T) contains exactly the
numbers of the columns of T containing j arranged in (weakly) increasing
order from top to bottom. See Remark 1 below the proof of this theorem
concerning this map.
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Proof. Let TeL and let p be its shape. Let [#\7] denote the tableau
of shape #\7 such that KAVAR ;=0 j) all i, j, so the entries reflect their
slots. Let [u] of shape u have a similar definition. Let E(#\1) and E(y)
denote the set of entries of [#\ 1] respectively [u].

First we construct a bijection f;: E(¥\ 1) E(u) such that for all i, j, k:
#(fr(ith row of [#\71]) n (jth column of [u]))<1, and f,(kth-column
of [#\4]) = the set of slots in T containing k.

Put Y=¢/ (T) then the eclements in the first row of Y, so
Y 3,415 Y15, are numbers of columns of T containing the entries
Il+1, To+1,..,7,, respectively. These latter entries are, because Y is
standard, bottom elements in their columns, say their slots are
X3, 15 w00 X7, 4 15 = Xp,» TESPECively.

Set f((1, j))=x, for all je {Il +1,.., 7, }. We proceed with the entries
of T which are left now. The entries in the second row of Y determine
a new sequence of bottom elements and their slots shall be
Fr((2, 1,4+ 1)), o, f£((2, 7,)), as we did with the first row of Y. Continuing
this way we find the announced bijection f;. It is the inverse of the one in
[8, p- 169].

For i<v,, put Q,=fr(ith row of [#\1]), so E(x)=11;Q,. Order the
elements of Q; by :x<y<f7'(x)<f7'(y) in lexicographic order.

Forjeji, and ie¥, put Q, ;= Q,n (jth-row of [i]) so Q, =11, Q, ;alli
Let for a set Q, S(Q) denote the symmetric group on Q. Put for i<,
P,={oeS(Q;)lfor all j and all x, yeQ, ;: x<y<>a(x)<0a(y)}, and put
P=TT1 | P. Let for all pe P, T” be the tableau of shape u such that for
all i<v, and all xe Q,, (7)., =T,

Now let br: @7, A¥(M)—>S" “(M®A") be the natural A-homo-
morphism defined by

% Z Sgn(p) '(pu <a® ® (e(T")j_l A e(rﬂ)“ A e A (e(Tp)]‘”/)),
J

pepP

where (e, e,, .., e,) is the natural basis of 4" and ¢, is the natural
A-homomorphism in the proof of Proposition 1.3. Then the image of b is
contained in the image of the natural injective A-homomorphism:
@7, SHM) > S (M@ A") defined by @, (m;-myy- - <My g )
[L(m, ®e)-(m,®e) - -(m;5Re,)), for m, ;e M all i and j, simply
because the content of T is §.

In order to understand “b;”: @; A%(M) - &), S#(M) we shall describe
it in the case M = A". In this case the map corresponds to (see the proof
of Proposition 1.3)

LUIT)IT (K1) 4~ LUIV)(U, V)e BT (<r, B)> 4
defined by (U|T,) ¥, »sgn(p) - (U| T?).
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Claim 1. (a) If Te L then ¥, »sgn(p)-(U|T?) is contained in
(S| T7)|SeST(<r)Y,.,, forall UeT*(<r).

(b) If TeL and UeST™* (<r), then X, psgn(p)-(U|T%)=
U|In+x»s,,.V|W) for certain b,,€Z-1,, where the sum is over
IUT):={(V,W)eSBT (<r,)|W>.Tor (W=Tand V>_U)}.

(c) (Converse to (a) and (b)). Let 0#xe{(S|T;;)|SeST
(<r)>4 and write x=ay (U'|T)+Y a, (V|W) for ay r€A4\{0},
a,,€A all (V, W), where (U, T")e SBT (<r, ) and the summation is
over I(U',T'), see (b). Then T'eL. (One can write x like this by
Theorem 1.1(b) and the expression is unique by Theorem 1.1(d).)

“Proof” of Claim1. Parts (a) and (b) can be proved with similar
techniques as [8, (11.21) respectively (11.22)(1)]. Part (¢) can be proved in
a similar way as [8, (11.13)] because of Theorem 1.1(f).

By specialising Claim 1(a) we find that Im b, is in fact contained in
S M).

Claim 2. (a) Y ro.Imbr=8"(M).
(b) br(Kerd,(M))cy,. rImb,.

Moreover let b,: ®; 4() = S\ (M)/Y,, ... Im b, be the map induced by
br, then by factorises through a natural map

. / . .
cr: SAM) - S M) / Y, Im b, which is an isomorphism onto its image.
V>.T

Proof of Claim 2. Clearly one may assume that M is a free A-module,
of rank r say, so we can use the description of b just above Claim 1.

Let us say that for the xeN:={(S|T,;)|Se ST (<r)>, in
Claim 1(c), (U’, T") is the leading bitableau of x with coefficient b, ;..
Then by applying Claim 1 (parts (b) and (c)) repeatedly one finds that
Yvs.rImb, is generated by all elements of N with leading bitableau
(U, W) with coefficient 1 for some (U, W)e SBT (<r, B) with We L and
W=.T.

Hence, (a) follows from Claim 1(c). Moreover, sclect for each Ue ST*
(<r) an element of N with leading tableau (U|T) with coefficient 1 (this
is possible by Claim 1(b)), then the classes of these elements form a basis
for Im b, by Theorem 1.1 (parts (b) and (d)), which we will use below to
prove (b).

But one can also_use parts (b) and (c) of Claim1 to show that
br(Zoersen(@)(U°1 1)) = Tocnsgn(o) T,c, (U°1T°) € 5y, rImdy,
where we use the notation from Theorem 1.1(a), (with v replaced by u



SCHUR AND WEYL FUNCTORS 95

there). By the proof of Proposition 1.2 (with v replaced by x4 and A= (0)
there) one now sees that br(Kerd, (4"))c Y., rImd,.

Hence, the factorisation of b5, moreover ¢(U|T,) is by Claim 1(b) an
element of N with leading tableau (U, T) with coefficient 1, for all Ue ST*
(<r). Hence, the latter elements form a basis for Im b,, and since the
(U|T,) generate {((U|T,)|UeST" (<r)), by Theorem 1.1(b), we have
proved (b).

Observe that the definition of 4, defines in fact a natural transformation,
Br: @, A% - 8"~ %(-®A"). Hence c generalises to a natural transforma-
tion, Cr: S* - $"\/¥, . rIm B, which is an equivalence onto its image.

Now put N'=3Y,. +Imb, then the N” make up the desired filtra-
tion. |

Remarks. (1) One can define ¢, ; on tableaux of shape u of which
the elements in each column weakly increase from top to bottom. This
extension is a bijection onto its image, the inverse has a similar definition
and is used, and denoted by ¢, in [8, p. 170].

(2) Theorem 1.5 together with Theorem 1.4(a) describe $*(-@-) for
a Young diagram v, by means of a filtration with a subquotients tensor
products of Schur functors. Especially, one obtains a filtration of the Schur
module S*(A4*) for GI(k, A) over A (ke N,), when it is seen as a representa-
tion of a subgroup of type GI{/, A) x Gl(k — I, A), (embedded as diagonal
biock matrices), in terms of tensor products of Schur modules. So we
obtain a generalisation of the classical branching rule for Gl(k, 4) to
arbitrary commutative rings 4 with 1. A a summand for k=n (n is
such that v+—n) one finds a generalised Murnaghan—Nakayama rule by
projecting on “letter content” (1”). The Murnaghan—Nakayama rule
describes the restriction of Specht modules for S, to (Young) subroups of
type S x S, _ in terms of Specht modules. So we have generalised [14] to
any commutative ring with 1. In a similar way one derives a generalised
Murnaghan-Nakayama rule for generalised Specht modules, as mentioned
in [16].

‘CoroLLARY 1.5 (Compare [5]). Let meN, Ar—n and pr—m. Then
S*® S*: A-mod —» A-mod admits an explicit filtration by subfunctors,
S*S =LT'5LT> ... 5 LT =0
with leN, T'<_ T? <cr <, T' are all elements of {Te ST (w\p)|v—
(n+m), @, (T)e ST*\?(¥)} and for all i€] there is an equivalence
SUNMTIMT,  wherev' is the shape of T'.

Here p=(py, py, oo o) = (k-py) and o = (uy + Ay, iy + Agy e iy + Ay,
His Moy Pg ) —(n+m+k-p,), where k=7,.
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Proof. The skew shape @&\ p looks like

k

|
Hi

a o
.
AT

so the rows of “1” do not meet those of “i.” Hence, $*® S*=~S°\?, so
apply Theorem 1.5. |

L~

Remark. (1) For the connection between the tableaux parametrising
the subquotients, [5] and lattice permutations see [8].

(2) Corollary 1.5 generalises, and its proof as well, to skew Schur
functors.

Corollary 1.5 implies a filtration of the tensor product of Schur modules
SH(A*)® S*(4*) for Gl(k, A) over A with Schur modules as subquotients.
So one obtains a generalisation of the classical Clebsch-Gordan rule for
Gl(k, A) to arbitrary commutative rings A with 1. Also by the proof of
Corollary 1.5, S4(A"*™)® S*(4"+™)= S°\*(4"*™), using the notation of
Corollary 1.5. By projecting on “letter content” (1**™) of S°\?(4"*™) one
finds the representation: Ind§ri% (%(4)® #(A4)). So the filtration in
Corollary 1.5 yields a filtration for the induced representation of S,, , ,, with
Specht modules as subquotients, by projecting on content (1”*™). Thus
recovering the (generalised) Littlewood—Richardson rule for Specht
modules in [8]. The induction S, x S,, = S, ., . is adjoint to the restriction
Suim—= S, xS, this is nicely reflected by the proof Theorem 1.5 and the
one for the Littlewood-Richardson rule in [8]: the proofs use bijections
inverse to each other.

II. FILTRATIONS INVOLVING WEYL FUNCTORS

We will now introduce another kind of letter place algebras, based on
the exterior power as opposed to the symmetric power which is basic for
the letter place algebras in the first chapter. We shall derive combinatorial
results for these new letter place algebras analogous to those for ordinary
letter place algebras. A non-characteristic-free start was already made in
[11]. With these results we construct filtrations analogous to those in the
first paper, but now involving Weyl functors instead of Schur functors.

The Weyl functors are the contravariant duals of Schur functors, this
notion of duality shall be defined below. Over algebras over the rationals
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the corresponding Weyl and Schur functor are equivalent. But over
algebras over a finite field, for example, they differ significantly in general.

Since Weyl functors are contravariant dual to Schur functors, the
existence of filtrations involving Weyl functors follows in many cases
from the corresponding one involving Schur functors. As before, it is the
explicitness which is the main point about the filtrations.

We finish with a sketch of another natural kind of letter place algebras,
based on the divided power, and show briefly its relevance for Weyl
functors.

I1.1 The Combinatorics

DEFINITIONS.  Let n, me N, then ", 4 shall denote the quotient of the
free non-commutative algebra with generators Ji| /[, for iem and jen, by
the ideal generated by the squares. The class of ]i|j[ shall be denoted by
[i1j], (iem, jen), and the “i” on the left shall be called a /etter and the
“j” on the right a place. And ",,A shall be called the exterior letter place
algebra for (m,n). The aldjective “exterior” is explained by the
A-isomorphism ", A~ A(A"® 4 A") defined by [i|j]1—e,® f,, for iem,
jen, where (e, e, .., e,,) and (f, f5, .., f,,) are the natural bases for 4™
respectively A". Via this isomorphism ", A4 becomes an A[End , (4™)x
End ,(A")]-algebra. One can define polarisation operators and decoulering
on exterior letter place algebras as in [7]. We shall denote them by the
same symbols because of the following lemma (“generic case™):

Lemma 2.1. Let k, m, ne Ny. Then if k <n there is an A-isomorphism,

<ﬁ(a.-|i)|a,-ema11i> = ([a,11]-[0,12]- - -[a k] |aemall iy,

defined by

[1@@])—[a11] [a)]- - -[aklk], forall a,emalli.

This isomorphism commutes with all (decoulered) letter polarisation
operators. A similar holds, when k <m, for (decoulered) place polarisation
operators with respect to the A-isomorphism defined in a similar way:

k
<H (ilbi)lb.-ezlalli> = ([11b,]-[2062] - -+ - [k|b]Ibyenall iy,

i=1

Hence, we can also define (decoulered) Capelli operator for standard
tableaux and (decoulered) operators like D, (S, T,,;) and Dx(T, T, ;) etc.,

v\ZA
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in a similar way. However, instead of bideterminants we shall use, what we
shall call, bipermanents:

DEFINITIONS.  Let k, m, neN, and (U, V)e BT® (<m, <n), (a one-
rowed bitableau). Then we define:

[U|T] :=[Uo'(l)| V] [Ua(2)| Vy]e - '[Ua'(k)| Vil

where R is a transversal for S,/H, ith H,={o€S,|U,;="U, for all
iek} (the row stabilisor of U).

Observe that permutations of entries in U do not alter [U]| V] whereas
a permutation of the entries of V alters [U| V] by its signature. In fact
when ¥V contains two equal entries then [U| V] =0. Also, when the entries
of U are mutually distinct then [U|V]=2,cs 580(0)-LU|V,1)]-
LU\ Ve -+ - LUkl Vouyd, s0 it can be seen as a determinant as well in
this case. It should be clear now that results for letters do not necessarily
imply similar results for places in exterior letter place algebras, as opposed
to ordinary letter place algebras.

Let, more generally, (ay,,,..,a;)F k and (U, V)e BT* (<m, <n).
Then we define [U|V]:=[U, | Vied [Us Vil - LUl Vigl,
where U, , and V,, denote the ith row of U respectively V. For skew
shapes we view, as for bideterminants, the skew shape as a partition.

Now [U] V] shall be called the bipermanent of (U, V).

Let (U, V) be a bitableau of shape a, possibly skew, Young diagram then
[(UI@]:=Xy - v [UIV'], and [U|V] shall be called a symmetrised
bipermanent. . .

By [[@|V] we shall mean },.osgn(e)D (U, T, )T, | V], see
Theorem 2.2(g), where B= (1}, Z,, ., 4, 0"~ "), Q=TIL, S({B,+1,
Bi+2,...5,}) and ("U),;=U,y, , for all i j. Here S(P) for a set P
is the symmetric group on P. And [[u]|T] shall be called an alternated
bipermanent.

The results in the exterior letter place algebras we need are (compare
with Theorem 1.1):

THEOREM 2.2. Let r,seN, v, and A be Young diagrams with v A. Let
Y n, 6 = n, and (S, U)e BT"\*(y, §).
(a) (Straightening, implicitly in [1], see below).

(1) Suppose one is in the situation of Theorem 1.1(a) with respect to
U then

Y. sgn(a)[SIUTeL[VIWI(VIW]|(V, W)e BT?(y, §) for some p—n

ceR

withp>v> , , ,where R and U’ are as in Theorem 1.1(a).
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(2) Suppose A=(0) and V,>2 and let ie{l,2,..,7,—1},
€{l,2, ., v, 1} and ke{0,1,..,v,,,—j} and write the ith and (l+1)th
row of S like

Ay Gy - Qi Cipkq1 Cirks2 Cr

Cj je1 o Cyrbiby by,

' c

Cl CZ “aa Cj*l

where d=v,, ,—j—k and f=v;+ k + 1. Suppose one has
AGSAS S S 1S 2S 0 SG

AN L A \%
1 < ¢; =cj+1=...=j+k<b1<b2<...<bd,

then Y ..ot ["SIUTe ([VIW]I|(V, W)e BT*(y, §) for some p—n with
P>V)z 4, where Q and r, are as in Theorem 1.1(f) except that the c|'s are
now in the ith and (i+ 1)th and (i+ 1)th row. Observe that °S<, S for
a ¢ S., using the notation of Theorem 1.1(f). In case U= T, the span is zero.

(b) (Implicitly in [1], see below)
[SIUTe<ISIW]IWeST(8), W<, Uy, + B,(,9),

where B,(y, 8)=[V|W]1|(V, W)e BT?(y, d) for some pw—n with p>v,
and W and V' are standard); ;.
Moreover, [S|U]e[V|U]|VeT(d), V<, S, V¥ is standard); | +
B,(y,0). When U=T,, B,(y,5)=0.
(¢) (Compare [12].) Suppose U is standard. If A= (0) or the entries
of U are mutually distinct then

CAUISIU]=[SIT,,,]

If 4=(0) and U’ € T"(8) with U’ >, U then Co(U)[S|U’]=0.

(d) (Implicitly in [1], see below.)

{[SITII(S, T)e \J BT (<r, <s), S" and T are standard )}
is an A-independent system.

(€)  (Implicitly in [1], see below.) Put a=(Ay, Ay, .., Ay, 0" 1)
and f=v\4, as partitions. Suppose there is an i€ {1,2, .., ¥, — 1} such that
B:#0, B 1#0 and v,, > a; (ie., the ith and (i+ 1(th row meet.) Let
JSBivywithj>o,—a,, andletke {0, 1, .., B,,,—j} and write the ith and
(i+ 1)th-row of S like.

a, a4, -+ 0, Ciigyr Ciyran Cr

C1€2Cj ¢ Ciey1°°°Ciy € Ciy1  Caxbiby-- by,
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so the transpose of the situation in Theorem 1.1(f). Suppose there are
equalities and inequalities as in Theorem 1.1(f) then 3", o1, - [°S|T,\;1=0,
where Q and r, are as in Theorem 1.1(f) and °S has a similar definition as
°U in Theorem 1.1(f) except that the c/s are in the ith and (i+ 1)th row.
Observe that °S<, S when 6 ¢ S,, where ¢ is as in Theorem 1.1(f). Moreover

[SIT,;1eVIT, ;]I VeT(y), V<, S, V™ is standard ), , ,
{[SIT,;1|Se T\ (<r), 8" is standard}, is an A-independent system.
(f) (1) Suppose one is in the situation of Theorem 1.1(f) with respect

to U Then ¥ ,.o [S] 1=0, where Q and °U are as in Theorem 1.1(f).
And

[SI@1ed[SIMIVeST o), V<. Uy o,

{[(T; )" M1 Te ST\ (<)} is an A-independent system.

(2) Put a=(%;, 15, ., 43, 0" ~H) and B=v\4, as partitions. Sup-
pose there is an i€ {1,2,..,v,— 1} such that p;#0, B, #0 and ¥V, (>,

(ie., the ith and (i+1)th-column meet). Let je{1,2,..B,,,} with
j= ¥, —«a; and write the ith and (i + 1)th-column of S like

4]

a, Ci_
Cier G
by
by
ba
r

the transpose of the situation in Theorem 1.1(¢).
Suppose there are equalities and inequalities as in Theorem 1.1(¢). Then
Soerl |U]=0, where R is as in Theorem 1.1(e} and S° has a similar
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definition as U° in Theorem 1.1(e) except that the c/s are in the ith and
(i + 1) th-column. Observe that S° <, S for o #1. Moreover,

[EU1ed[MIUNVeTM(y), VL, S, VT is standard ), , ,
(B Ue[B W WeST*0), W<, Uyy .

(g) (Compare [1].) DU, T, )[SIT,,1=[S|U].
D (U, Tv\))[SI Tv\,i] = [S| ]

D (S, TV\A)[TV\lI U]l=H(S)-[S{U], where H(S) is the product of the
orders of the stabilisors of the rows of S (see the definition of one-rowed
bipermanents).

Proof. (a) (1) Suppose we have proved the result with T in the place
of S (and A= (1")). Then by applying H(S) ' D (S, T) we see that we
are done over 7, hence over A, where H(S) is the product of the orders of
the stabilisors of the rows of S (sce the definition of one-rowed biper-
manents). So let S= TV, and 4=(1"), then [T |U’] and all the [V| W] in
the span can be seen as bideterminants, see the remarks about one-rowed
bipermanents. The assertion about X sgn(s)[T,! U’] is a consequence of
the Laplace expansion for a determinant corresponding to a division of
columns in two groups (see [7] in case of doubt). The anti-commutativity
of the exterior letter place algebras causes no problems.

(2) As in the proof of (a)(1) we shall prove the straightening for
a special case and derive the general case from it.

Replace all the ¢/s by ¢ :=¢; and let S be the resulting tableau on the let-
ter side and let § the content of S. Let us denote the ith and (i + 1)th-row
of U by (x,x,---x,) respectively (y; y,---»,,.,) then

l:alaZ "'aj—lc"' PR P C 'xlxz... xv']
CC P C C"'cblbd"' bd ylyz ...ydl+l
equals
+ Y sgn(o,)sgn(s,)
01,02
CC - € | Vaun Vo2 Yo+ oXa) Xy
Xl a1ay - a1 | Xo1)%qy(2) o Xaj—1y )
b1b2 bd yaz(j+k+l)yaz(f+k+2) yo’z(v,'H)

where the summation is over all g€ {o€ S, |a(1)<0a(2)< --- <a(j—1),
o(j)<o(j+1)< --- <a(v,)} and all g,e{c€eS, |o(l)<o(2)< --<
o(j+k), o(j+k+D)<o(j+k+2)< --- <a(vi,1)}
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Hence, [S|U)e{[V|IW]|(V,W)eBT*(},d) for some p+n with
p>v>z.,,- By applying [],..D}(l,c) one finds the assertion for
>.co L’SIU], where ¢ is as in Theorem 1.1(f). In case U=T, the span is
zero since each We BT”(¥) with p>v has two equal entries in one of its
rows.

(b) Follows from (a), see the remark below Theorem 1.1.

(c) Can be proved in a similar (straightforward) way as
Theorem 1.1(c).

(d) Let us denote the system by I and suppose there is a non-trivial
relation Y (g ryesas7[S|T1=0. Let T, be the column lexicographic
smallest element of {Tel),,_,ST* (<s)|as#0 for some S}.

Then by (¢), 0= Cp(To)(X a5 [SIT])=Ysas r(SIT,), where u is the
shape of T,

Claim. J:={[S|T,]|SeT" (<r), S is standard} is an 4 independent
system.

Proof of Claim. Set K={UeT" (<r)| in each column of U the
elements are weakly increasing from top to bottom}. And let for UeK,
[U] denote the “monomial”:

[U1,1|1]‘[U2,1|1]' ‘[Uﬁ1,1|1]
[UL212] o - [Ua 0l 20 o - LU, 4]

Then L:={[U]|UeK} is an A-independent system. And the column
lexicographic order on T* (<r) induces a total order on L. Now for Se T*
(<r) with S standard write [S|7,] as a linear combination of elements
of L, then the smallest element of L which occur with a non-zero coefficient
is [S], and its coefficient is in fact 1. The independence of J now follows.

By the claim, ag ,,=0 for all S, which implies a contradiction. So [ is
independent, as was to be proved.

(¢) The straightening can be proved in a similar way as that in
(a)(2). The result for [S|T,, ;] follows from the first assertion in (e), see
the remark below Theorem 1.1. And the independence system can be
proved as that for J in the proof of (d).

(f) (1) Concerning the first two assertions we may assume, as in the
proof of (a)(1), that S= Tv\,l
Now the second map in Lemma 2.1 maps (TV\AI M) to [TV\M @] for
all TeT" (<S) Hence the first two assertions follow from
Theorem 1.1(f). The independence of the system can be proved in a similar
way as that for S in the proof of (d).
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*

(2) Concerning the first two assertions we may asume U=T,, ,

A

by (g). Now the first map in Lemma 2.1 maps (V" | (f’v\i)“ Yto [ | f”v\l]
for all VeT"™ (<r). Now by Theorem1.1(g), (V"| (f‘v\l)" )=

D,,((T*"V\i)", T, ) (V| Ty 5), for all ¥e T (<r). So the first two asser-
tions follow from Theorem 1.1(e). Concerning the last assertion observe

that the second map in Lema 2.1 maps (fv\ V) to [f” | V] for all

v\4

VeT\* (<s). By Theorem L.1(g), ( j"v\l | V)=DL(fv\i, T, NT,;|V)

for all VeT' (<s). Hence, the last assertion follows from
Theorem 1.1(e). |}

Remark. The “missing” parts with respect to Theorem 1.1 are, in (e),
results for [(7;,7)"|U] and, in (f)(2), and independence result for
([®1T,,1ISe TV (<n)).

Now, starting with the later, the independence is not true in general but
it is true when A is Z-torsion free, which shall be proved in the second
paper.

Concerning the elements [(T;;)"|U), observe that there is an
A-isomorphism

Vi
CUT DM IUNUETM(K8)) = @ A%(A°),  where a=v\4i
i=1

Now see Proposition 2.3.

We shall now make the connection between [ 1] and exterior letter place
algebras. The connection is similar as for ordinary letter place algebras.
Let vi—n, aeN,y, A+—a and suppose vo i Put a=7\71 and f=v\4,
as partitions. Define, as in [1], natural transformations ®f‘= ' D% >
(-)® 9> @], 4™ as follows.

Define the first one by (m, ;e M all i, j),

Yi

® (mi,l(ni‘l)‘mi,z(nl’Z)‘ My

L pi

(ni,ﬂi))

i=1
Y @ (M) @M g2 ® -+ @My gyq5,)s
4 i

where n;:=(n,;,n,5,..,n,5) = B; all i and the summation is over all
ce[];L, R; with R, a transversal for S, /S, for all i. And ®,x;, for
x;€ M®% all i<7,, means the image of x, @ x,® --- ® x;, in MP"~ 2,
Define the second transformation by (m;e M all i),
m@m® - @m,—~ @ (my ;Amy; A - Am, ), where,forall (i j),
Jj=1

607/90/1-8
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m; ;=my; ;, with I(i, j)= YR B+ — (Vo - B ), where n(i, j)=
V,—a,;+i. This latter transformation can be described in a similar way as
the corresponding one in the definition of d;, ;

Let us denote the composition of the above transformations by 47, ; then
by Theorem 2.2(c) there is a commutative diagram for each re Nj:

DAY DA ® --- @ DF(A7) B, A (ANVRAHA)® --- @ A™i(A7)

: El

(LS| T, 1ISe TV (<), <hh (LS| TTI(S, T)e BT (<r, @) .

Here the vertical maps have a similar definition as the corresponding ones
for d;\;(4"). .

By Theorem 22(¢), ImC,(T, ,)=<(S|T, )=<SIT,)|SeT™
(<r), S" is standard >, is universally free. Slightly generalising [1]:

DeriNITION. Let v and A be Young diagrams with v> 4 then
Wit :=Im(d?, ,: A-mod — 4-mod), and W} shall be called the (skew)
Weyl functor for the (skew) Young diagram v\ 4 over 4. Observe that the
image of W*)* is indeed in 4-mod because W*\* is a functor and W,*(M)
free of finite rank when M is. Also B® W'~ W, *(B®-) for any
commutative unitary A-algebra B. (We shall drop the suffix “4” in W4
when there is no danger of confusion.) Clearly, W*(4™)=0 when 7, >m.

EXAMPLES. W™ D" and W''" = A" (the “extreme” cases).

Remarks. (1) W% (A4") is the module K, ,(4") in [1], and it
corresponds to coschur 4(v\4) in [3], and, for A=(0), to V' in [6],
(because of Theorem 1.1(f) and Theorem 2.2(e)), and to #7;(4) in [7].
Also W=\/, in the notation of [20]. Now W*‘#(4") is the skew Weyl
module for v\ A in the representation theory of Gl(r, A) (where A" is the
natural representation space of G/(r, A)), which explains our notation and
namegiving,

(2) By Theorem 2.2, parts (e) and (f)(1),

WA = (T, )" T]|Te ST (<r)>, as A[End ,(A")]-modules.

It is easily seen that d, ;(M) is the composition

® DUM)> @ (M) (@ she) ) (é‘; am"))’

j=1 i=1

3@ (M) 3 Q@ 4(M)

where (-)* denotes the functor Hom ,(—, 4),
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the first two isomorphisms are the obvious ones and the last two are the
inverses of the obvious ones. All maps are natural so they define natural
transformations, and hence S *((~)*)* ~ W”,* as endofunctors on A-mod.

DEerFINITION.  Let F: A-mod — A-mod be a functor then the contravariant
dual of F is the endofunctor on 4-mod defined by M F(M*)* The
contravariant dual of f is denoted by F°. Especially (S**)° = W\ for all
Young diagrams v and A with v> 4. Now S"*((4")*)*, seen as representa-
tion of Gl(r, A), is usually denoted by S*‘*(4")° and is called the
contravariant dual of S *(A4"), see, for example, [13], which explains our
notations and namegiving. The duality between Schur and Weyl functors
goes back to [20].

Consider the diagram for 4 a4 forr=n—a

Clearly ([S|T]|(5,T) € BT(1" “ 0)>4 = A[S, ,] ® ssymd as
A[S,_,]-module, via the vertical map on the right in fact using the
convention about the inclusion A[S, ,]® ,rs5pwd in @, A%(A" 7).

Also {[S| Tv\ﬁ.] |Se T (1" %)) , = A[S,_]1® atsypnA as A[LS,_,]-
module.

CoNVENTION (Notation as Above). We shall identify A[S,_ a]®
agsgyo A with the subspace of &); DA(A"~ %) correspondlng to {[S|T, ;]I
S e T"\4(1"79)> ,, via the vertlcal map on the left in the diagram for

\I(An a)
So there is a commutative diagram

A[Sn-a]®A[s,,]m'vA — A[Snfa]®A[S¢]SB“A

i 1

(817,718 e TV ) 2T, ([SITTI(S, T)e BT(17~%, ) ) .

JISe TV (1m—9), §* s

v\4

By Theorem 22(¢), Im Cx(T, ,)=<[S|T
standard » , which is universally free.

DEFINITION.  #* (A4) := Im(e¥, ;), and #*\*(A) is called the (skew) dual
Specht module of S, _, for the (skew) diagram v\ A over 4. When 1= (0)
it corresponds to &*(4) in [7], because of Theorem 2.2(¢) and
theorem 1.1(f). The isomorphism S”\*((4"~°)*)* = W*\*(4"~“) yields an
isomorphism %, (A4 )*~y”\’1(A) where S,_, acts on &, ,(4)* in the
usual way: @ f(x) =f(c"'x) for fe Hom (¥, ,(4), 4), 6€S, ,, and
xe, ,(4).

The kernel of d9, ;, compare Proposition 1.2, is described in:
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PropPoSITION 2.3 (Compare [20]). Let v and A be Young diagrams with
vRA Put a= (4,4, .., 45, 0°~M) and B=v\A as partitions. Then
ker d{, 1(M) is generated by all the elements:

(4 [ £
Z {x1®x2® ®xi71®(al<ml),a2(mz). ,ae(rn)‘cl(ll),c;z), ,cs(/))
4)

h h hs
®(C1( 1)_6.2( 2), ... 'Cs( )~b1(g“-b2(g”- ,bd(gd))®xi+2® @x”}’

where i, j, k, d, e, and f are as in the Theorem 2.2(e)), x,€ D*"(M) all r. And
se{l,2, .. f—k}, te{,2,..,r}, (1,85, &) = f such that ¥!-1e,<
j—land ¥i_,e;2j+k

And a,,ay, .., a,, €1,Czy . Cyy by by, beM, (my,m,,.,m,)Ee,
(21, 82, 84) = d and the summation is over {(I,h)e(N5xN3)/|I =
Bi—e,hl= B,y —d Li+h,=¢;dlli}.

(This can be proved in a similar way as Proposition 1.2 using
Theorem 2.2(e).} |

11.2. The Filtrations

Here is the result from [1] in which implicitly the straightening on the
exterior letter place algebras was involved. It also shows how Weyl
functors turn up in studying exterior powers.

ProrosiTION 2.4 (Slight Refinement of [1]). The functor A"(-®-):
A-mod x A-mod — A-mod admits an explicit filtration by subfunctors

A(-®-)=L*oL"> ... o "' =0

with leN, ' <p’< --- <y’ are all Young diagrams for n and for all iel
there is an equivalence

i+1

WH ® SF ~ L*/L*

Moreover when vi—n, ® ., A*: A-mod — A-mod admits an explicit filtra-
tion by subfunctors

@Av"=K’“:>K’123 oK =0

with meN, A <A*< ... <A™ are all elements of {A+—n|X<v} and for all
iem there is an equivalence W* ® F, K*/K*"", where F, is the constant
functor with value theb free A-module of rank # ST*(v).

In case v=(1") then S, acts on ®; A" =(1)®" as follows: for 6€S,, ¢
acts via sgn(o) - G,, where G, is the usual permutation action on the nth ten-
sor power given by a. In this case the K* can be chosen to be S,-invariant
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and such that the action on K*/K*"" corresponds to an action on F; turning
the value into S*(A).

Proof. The proof below is quite similar to the proof of Proposition 1.3.
Let u—n and o¢,: , DH(M)® ® 7L, AH(NYy—> A (M®N) be the
natural A- homomorphlsm deﬁned by

® (mi.x(li‘l] 'mi,z([i'Z)' 'mi,#i(["""))® ® (g AR~ o A ni.u,-)
*—’Z /\i((mi,ai(l)@ni,l) A (mi.o,(2)®ni,2) A A (mi,ﬂi(#i)®nivﬂi))’
g

where /;:=(l;y, 1,2, ... 1;,,) F u; all i and the summation is over all
oce[];R; with R, a transversal for S,/S, for all i Here Ax;, for
x;€ A*(M ® N) all i, means the image of x, ® x,® --- ® x; in A" (M ® N)
via the product map for the exterior power algebra of M ® N.

When M and N are free A-modules of rank r respectively s, then
(UTH)*I T TeT" (<5)) 4~ @, A*(N) via the isomorphism defined by
H(T)"IT] > @;ler, Aner, A - Aer, ) where (e, e,,..,e,) is the
natural basis of N = A4". Hence, ¢, corresponds to the A-linear map (see
above the definition of W*‘%): <[S|T 11SeT* (<)), ®<[TH)"I T
TeTI" (<5)), — L[SITII(S, T) € U,,—, BT" (<r, <)) 4 defined by
[SIT,I1®[(T)"IT]1— [SIT]

Moreover by specialising Theorem 2.2(a) we find that the quotient
homomorphism ¢,: @, D¥(M) ® ®,; A*(N) - A"(M ® N) factorizes
through a natural 4-homomorphism,

Cu W“(M)®S"‘(N)—»A”(M®N)/ Y Imo,.

>

When M and N are free A-modules of rank r respectively s then ¢,
corresponds by Theorems 2.2(b) to the A-linear map,

([S"IT,A1SeST (<r)) @ {[(Tp)" | THTe ST (<)) 4
= ([SUITTI(S, TYe | (ST (<r)x ST (<5))) 4

pr—n

defined by [S"|T,1®[(T)"|T1— [S"|T].

By Theorem 2.2(d) this map is an isomorphism onto its image.

Observe that ¢ ;) is surjective hence 3, Im ¢, = A"(M ® N).

Observe that ¢, generalises to a natural transformation @,: & ; D*(-)®
®; A*(-) > A"(-®~). Hence c, generalises to a natural transformation
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C,:WRS* > A"(-®-)/2,~,Im &, which is an equivalence onto its
image.

Hence, put L*=3..,Im®, then the L* make up the desired
filtration. Concerning ), A", observe that there is an equivalence
® (arap.om) b n Q71 A3 A"(~R A"), defined on the summand for « |= n
by

o

Q (myAmn - Am,)

1

*“’/\ ((m, ®e;) A (m,®e) A - A (M, Re,)),

where m; ;e M all i, j and (e}, e, .., €,) is the natural basis of 4”. Now
the filtration for &, A" is the summand of the one for A"(-® A")
corresponding to a=v. The dimension of the value of F; follows from
Theorem 2.2(d). The filtration for X); A" with v=(1") has the desired
properties. [l

Remark. As a direct summand of the filtration for ); 4"(A") there is
a filtration for A[S,]® 4= 4, corresponding to letter content (1").
Compare [8].

Skew Weyl functors arise as follows:

THEOREM 2.5. Let vi—n and L e A-mod.

(a) There are explicit subfunctors F, for ke{0,1,.,n}, of
W'(-®-): A-mod x A-mod — A-mod such that W'(-®-)= DB} _, Fi- And
such that, for each k, F, admits an explicit filtration by subfunctors

| 2 Hk)+1
F,=K'oK'>...oK*"" =0

with I(k)eN, 2! <A?< --- < A" are all elements of {Av—k|v> A} and for
all i€ (k) there is an equivalence

Wii® Wv\;LESK;Li/KAi+1.

(b) Suppose there is an exact sequence 0 > N - M — L - 0 in A-mod
then W*(M) admits an explicit natural filtration:

i+1 !

W”(M)=N"13N”ZD---:>N" =0 with leN, p'<p’< ... <y
are all elements of I1=\J5 _o {u—k|vo u} and for all i€l there is a natural
isomorphism W*(N)® W*\*(L) N¥*/N*"*'. By “natural” we mean the
same as in Theorem 1.4(b).
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Proof. A proof similar to that of Theorem 1.4 can be given, therefore
we only give the framework.

(a) Letke{0,1,..,n}and put P(k)={ae(No)"| XL, a,=k a;<v,
all i}. Let a e P(k) then one defines a natural 4-linear map

b ® D(N)® ® D*L)~» ® D(N®L),  where
i=1 i=1

i=1

B;=v,—ua;alli
by

i Bi
® ( H ni,j(m,-,,))® ® ( n l‘_'h(gi,h)> — ® (l‘[ ni,j(m,-,,; . l—[ li,h(gi'h)>,
ioNj=1 i \h=1 i i "
where n,,eN and [ eLallijh,
and (mi,17 mi.Z’ aees mi‘gi) #: o;

and (/;, 15, ... L) E Pialli

Put db,=dY(N®L)°b,: ®,; D*(N)® ®; D*(L) > W' (NDL).

Put X, =3, p)Im b,, then K, is a natural submodule of W' (N® L)
and Y[ _ Ki,=W'(N@®L)

Let ke {0,1,..,n} and let A—k be such that v> 4 then db; shall mean
db, with a= (4, 4, .y A3, 07 7%),

Then the following claims can be proved, by Theorem 2.2 and Proposi-
tion 2.3, in a similar way as the corresponding claims in the proof of
Theorem 1.4:

Claim 1. For aeP(k), Imdb,c3,, , .., Imdb,, especially K,=
> Imdb, Moreover 3; _  K,=@Pi_oK

Claim 2. Let A+—k be such that v> 4, and put f=v\ 4.
Then dby(x)€ ., ; .»;Imdb forall xe [Ker d}(N)® @1, DP(L)) v
(® L, D'(N)®Ker d? 3(L))].

By these two claims the quotient map db;: ®, D*(N)® ®, D*(L) -
Ki/¥o ko> Imdb, factories through a natural map c¢;: WA(N)®
WV\A(L) - Kk/z:t»—k >4 Im db

Claim 3. For all A+—k with vo A, ¢; is an isomorphism onto its image.

Now the maps db, genecralise to natural transformations
DB,: ®,;D¥(-)® ®; DP(~) - W*(-@-). And each K, generalises to a
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functor F,, with @} _, F,= W' (-®-). And c, generalises a natural trans-
formation

C,:W'® W”“—»Fk/ > ImDB,

t—k, >4

which is an equivalence onto its image. Hence, the desired filtration follows.
(b) Similar to the proof of Theorem 1.4(b). |

Remarks. (1) A slightly weaker version of (a) was claimed in [1].

(2) Theorem 2.5 generalises the well-known results for exterior and
divided powers (the cases v=(1") respectively v=(n)). Similar observa-
tions as in Remark (2) below Theorem 1.4 can be made concerning Weyl
functors.

THEOREM 2.6. Let aeN, A+ a, v+—n, suppose v2 4 and put §=7\17 as
partition. Then W*\* admits an explicit filtration by subfunctors

W"V“:NTJDNTZD DNTHI—_—O

with [eN, T' <, T?<,--- <. T are all elements of L={TeST*f)|u+—
(n—a), 9% ;(@)} and for all | there is an equivalence W* ~ NT'|N T where
W' is the shape of T'. Here %, y is defined as in Theorem 1.5.

Proof. A proof similar to the one of Theorem 1.5 can be given. There-
fore we shall only give a framework.

Let Te L and let u be its shape. Define the set P and the tableau 7% as
in the proof of Theorem 1.5 with the only difference that ¥ and 7 are
replaced by v respectively A. Define a natural A-homomorphism
br: @, D*(M)— A"~ (M ® A™) by

x> ), sgn(p) - o, <x® @ (eqroy, A ea A o A e(T”)u‘,)>’
peP i

where (e;, e,, .., e,) is the natural basis of 4" and ¢, is the map in the
proof of Proposition 2.4.

There is a natural injective A-homomorphism &L, AP(M) -
A"(M®A") defined by @;(m, AmsA - Amg)— A\ ((m;, @e;)
AN(m,®e)A - A(m;p®e;)), where m;, eM all j k. The image
contains Im(b;) since the content of T is S.

When M is free of rank r then “b;”: ®;DH(M)— &; A(M)
corresponds to the A-linear map,

CLUIT, U T (<r)y 4~ C[UIVII(U, V)e BT (<r, B)>, defined by

[UIT, 1 Y sea(p)[U|T"].

peP
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Claim. (a) Forall Ue T*(<r), X, psgn(p)[ U] T7] is an element of

([S™1T,,,]1Se ST (<)) 4.

(b) If Ue ST* (<r) then X, ,sgn(p)[U|T"] = [U|T] +
S b, w[VIW] for certain b, €4, where the summation is over
I(U, T)={(V, W)eBT (<r,p)|V" and W are standard, [W> T or
(W=Tand V>, U)]}.

(c) Let 0#Xe([S"|T,,1|SeST" (<r)y, and write X=
ay LU T 1+Xay w[VIW] for by 1€ A\{0} and ay, ye 4 all (V, W),
where (U')" and T are standard and the summation is over I(U’, T'), see
(b), (This is possible because of Theorem 2.2(b) and the expression is
unique by Theorem 2.2(d).)

Then T'e L.

(This can be proved in a similar way as the Claim 1 in the proof of
Theorem 1.5, by Theorem 2.2. See concerning turning over “shuffles” the
proof of Theorem 2.2(a)(1)).

By this claim ¥ ,., Im b,= W 4 M) and, using Theorem 2.2 as well,
the quotient map b;: ®;D“(M)— W (M)/Y,. rImb, factorises
through a natural map c;: W*(M)— W (M)/¥, . ;Im b, which is an
isomorphism onto its image.

Now b, generalises to a natural transformation B;: &), D" - W\,
hence «¢; generalises to a natural transformation C, @ W¥—
Wy, .. 71m B, which is an equivalence onto its image. The desired
filtration follows. |

Remark. Remarks similar to those in Remark 2 below Theorem 1.5 can
be made concerning Weyl functors and dual Specht modules.

COROLLARY 2.6 (Generalisation of [4]) Let meN, p+—m, Ar—n.
Then W*® W*: A-mod — A-mod admits an explicit filtration by subfunctors

WQWr=LT>LT> ... oLT"=0
with 1eN, T'< . T?*<,--- <. T are all elements of {TeST(®\p)|v+—
(n+m), 04 (T)e ST* (¥)} and for all ic] there is an equivalence
WY LT/L™""  where v is the shape of T".

(The proof is similar to that of Corollary 1.5). |

Remark. Remarks similar to those in Remark 2 below Corollary 1.5
can be made.

The contravariant dual of the symmetric power is the divided power. In
Proposition 1.3 there is given a filtration for a smmetric power applied on
a tensor product with tensor products of Schur functors as subquotients.
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Hence, there must be a corresponding filtration for the the divided power
applied to a tensor product with tensor products of Weyl functors (the con-
travariant duals of Schur functors) as subquotients. In order to construct
such a filtration one could hope for a divided letter place algebra which
would take care of the combinatorics. In fact we will sketch the construc-
tion of such a divided letter place algebra below. However, the Weyl
modules cannot be expected to be submodules in the way Schur modules
are embedded in the (ordinary) letter place algebra. This follows from the
definition of Weyl functors: they are gquotients of products of divided
powers. Hence, Weyl modules ought to be subquotients of the divided
power algebra.

As algebra the divided letter place algebra for (m, n) (m, ne Ny) is the
divided power algebra of the free 4-module with basis ((i|| j)|ie m, jen).
The i on the left in ({]| /) can be seen as a letter and the j on the right as
a place. Clearly, the divided power algebra for (m, n) is isomorphic to
D(A™® A") when we let (i]|j) correspond to ¢;® f; as usual. Via this
isomorphism the divided letter place algebra becomes an A[End ,(A™)x
End ,(A4")]-algebra.

In order to produce an A-basis suitable for filtrations we define a kind
of bipermanent:

Let n,m, keNy, « | k and let (U, V)e BT* (<m, <n). When a = (k)
put (UIV)=%,cx {UsyUsiry--- Usiiy | Vi V- Vi), where R is a
transversal for H,\S,/H, with H, the row stabiliser of U and H, that
for V (see the definition of one-rowed bipermanents). And, for
(W, X)e BT®(<m, <n),

(WX} = H H (N with m, = #{lek|(W, X,)=(, j)} alli j.

i=]| j=1

In general, put (U V)=TT7_, (U Upa--- Uiy I Vit Vi -+ Vi) where
b is the number of coordinates of a.

The straightening is easily seen to be seen as in Theorem 2.2(a)(2) for
letters and places.

Hence, when Av—n, « = n, = n and (U, V)e BT*(a, B) then (U} V)e
(SIT)|(S, T)e BT*(«, B) for some u+—n with u=4, S<, U, T<, V, S”
and T are standard ) ,.

The independence of (S| T*)| (S, T)e U n SBT* (<m, <n)) follows
from Theorem 1.1(d), by a dimension argument And hence, as usual a
filtration D"(-® -)=L* > L*> ... o L¥*' =0 with Ie N, y, <pp<-

u,; are all Young diagrams for n and for ie/ an equivalence W* ® W“
L*/L**'. As a summand, for example, a filtration for @7, D% With
respect to the bases of standard tableaux observe that the exterior letter
place algebra is a mixture of the ordinary and the divided letter place
algebra.
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Finally, one can define ([t] UV) and (U| [¥]) in a similar way as alter-

nated bipermanents. The straightening on both sides, is as for alternated
bipermanents, and the independence for standard tableaux is as for alter-
nated bipermanents.

10.
11.

12.

14,
15.
16.

17.
18.

19.

20.

A,.

A,
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