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0. GENERAL INTRODUCTION 

The Schur and Weyl functors are the functorial generalisation of the 
Schur respectively Weyl modules in the representation theory of general 
linear groups, this also explains their names. Both types of functors are 
defined over any commutative ring with 1, and they are parametrised by 
Young diagrams. They were defined and studied in [20, 11, further work 
can be found in [2, 51. 

The Schur and Weyl functors are endofunctors on the category of finitely 
generated projective modules, and they are universally defined, i.e., they 
commute with change of base ring. Special cases of Schur functors are the 
symmetric and exterior powers, in fact these are the extreme cases in some 
sense. Weyl functors are the duals of Schur functors in a natural sense, the 
divided power is the dual of the symmetric power in this sense and the 
exterior power is self-dual. Both Schur and Weyl functors also arise 
naturally in the study of exterior and symmetric powers. 

To illustrate the relevance of Schur and Weyl functors in multilinear 
algebra and in general representation theory of groups, we mention the 
following: For each Young diagram there is a special universally defined 
natural transformation from the Weyl to the Schur functor which can be 
characterised up to sign. In case the base ring contains the rationals it is 
in fact an equivalence. The images of these transformations constitute over 
an infinite field a complete irredundant system of irreducible polynomial 
endofunctors on the category of finite dimensional vector spaces. And when 
applied to the natural representation of the endomorphism monoid, or the 
automorphism group, of a finite dimensional vector space, they give a com- 
plete set of irreducible polynomial representations of this monoid respec- 
tively group. (For the definition of polynomial functors and representations 
see [ 18, 13-J.) Moreover when the base field is finite similar results hold for 
the natural transformations for a certain subset of the set of all Young 
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diagrams. And in this case the polynomial condition is not a restrictive 
condition. The above results will be proved in a planned follow up of this 
paper; see however [ 171. 

Since the Schur and Weyl functors are universally defined general results 
about them rely on combinatorial observations. They are elementary in fact 
and go back to the 19th century. The combinatorics we need to deal with 
Schur functors is precisely given by letter place algebras, as developed in 
[12, 7, 81. For Weyl functors we shall develop another, but in many 
respects similar, kind of letter place algebra based on exterior powers, as 
opposed to symmetric powers which are used for ordinary letter place 
algebras. For recent generalisations of these algebras see [A,, A?, AJ. 

This paper is divided into two chapters. In the first chapter we construct 
explicit universal functorial generalisations of the classical branching and 
Clebsch-Gordan rule for Schur modules, generalising results in [ 1,2, S]. 
In our setup the Clebsch-Gordan rule is a special case of the branching 
rule. The corresponding rules for Specht modules for the symmetric groups 
(Murnaghan-Nakayama resp. Littlewood-Richardson rule) can be seen as 
summands, thus generalising [8, 141. 

In the second chapter we prove similar results but now for Weyl 
functors, generalising [ 1,4]. Each chapter has its own introduction. 

We observe that the filtrations involving Schur and Weyl functors 
constructed in the first two papers are in agreement with more general 
existence theorems for algebraic groups, as in [9, lo]. Our filtrations make 
perfect sense over non-commutative rings with 1 provided one restricts 
oneself to two-sided summands of finite direct sums of copies of the base 
ring (as opposed to finitely generated projective modules). 

The results in this paper form part of the author’s thesis [ 151. 
Some general notation: 

A: a commutative ring with 1. 
A-mod: the category of finitely generated projective A-modules. 
M, N: elements of A-mod. 
N,: N u (0). 
n: an element of N,. 
/1”, S”, D”: the nth exterior, symmetric respectively divided power seen 

as endofunctors on A-mod. 
S, : the symmetric group on ( 1, 2, . . . . n f. 
M(n, A): the monoid of n x n matrices over A. 
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I. FILTRATIONS INVOLVING SCHUR FUNCTORS 

As mentioned in the general introduction, we shall, in this first chapter, 
use letter place algebras as the combinatorial devise to derive results for 
Schur functors. Basic are the results that a Schur functor is universally free 
on free modules and that the symmetric power applied on a tensor product 
admits a universal filtration with as subquotients tensor products of Schur 
functors. This latter results generalises Cauchy’s determinental formula and 
shows that Schur functors arise naturally in the study of symmetric powers. 
Typical consequences are a filtration for tensor products of symmetric 
powers and for “good” base rings also, see [ 163, a formula for a Schur 
functor applied on a tensor product of symmetric powers (so-called (outer) 
plethysms). 

We shall give a universal filtration for a Schur functor applied to a direct 
sum with a subquotients tensor products of Schur functors again. 
Immediate consequences are the branching and ClebschPGordan rule for 
Schur modules for general linear groups. 

I. 1. The Combinatorics 
We start by summarising the results for letter place algebras we shall 

need and, to make this possible, a checklist for the notation. 

[7, pp. 163-1651: ( ),.,,k, c1 /=k, S,, LF-k, a</?, a(1/3, T,, iA, -c, 
<<, <,, T’ (<HZ), Sp( Gm), T’(a), ST’(a), (S, T), BT’(cr, b), SBT’(a, fl), 
BT(a, P), SWa, PI, A,“, (Sl T), D’,(a’, a), Dp’(b’, 6). In case a k k, or 
J, + k, we shall allow k to be zero. A proper partition is called a Young 
diagram. When A+ 0 we put E, = (0) and 1, = 0. The associate of a Young 
diagram ,? shall be called the conjugate of 3, and is denoted by 2. When 
L + 0, I+ 0. The lexicographic order for partitions shall be extended: if 
a k k and /?j= 1 thfn a</l means k<l or (k=I and a</?). For any 
partition a, T, and T, shall have the obvious meaning. We view A,” as a 
left A[End,(A”) x End,(A”)]-algebra in the obvious way, extending the 
action of Gl(m, A) x Gl(n, A) in [7]. 

[7, p. 1691: By C,(S) and C,(T) we shall mean the decoulered Capelli 
operators 6 0 C,(T). 

C7, PP. 172, 1731: (N I T), (Sl El 1, (El I ITI ). BY D,(S, TJ, D,(T, Tj.), 
etc., we shall mean the decoulered operators So DL(S, T,) respectively 
~oDAT, Tj.1. 

[7, p. 1863: For SE T( 1 “), P(S) and Q(S) denote H(S), respectively 
V( S)A. 

[8, p. 1631: T”. 
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[S, p. 1671: ~\a, TV’* (<m), T”“(E), ST”‘” (<m), ST”\“(u), zk. We 
shall delete the brackets in (v)~ (A), (v)\(L), TI,,,, and TI(“),(~.). Further- 
more, BT”“(a, /3), ZBF’” ( drn, /I), etc., shall have the obvious meaning, 
similarly for T”,n, T,,A, C,(T”,,), D,(S, T”,A), etc. In the following cases 
ye allow 1 to be any partition: v =) 1, v\l, 7’“\‘(...), BY”‘\“( . . . . . ..). T”,, and 
T V,l. The orders < r and < c shall be extended to skew shapes v\I in the 
obvious way. Since v \ i can be seen as a partition as well, namely (v I - A 1, 
v2 - 12, . . . . vx, - ax,, VI, + 1, ..., v3,), bideterminants for bitableaux of skew 
shape make perfect sense, as well as symmetrised bideterminants. 

We have summarised the results we use about bideterminants, and 
operators on them, in the following theorem. (All bideterminants are 
computed in a letter place algebra where they make sense. 

THEOREM 1.1. Let r, s E NO, let v and I be Young diagrams with v 2 A., 
let y k n, 6 k n and let (17, T) E BT”\‘(y, 6). 

(a) (Straightening, [19] or [12]). Suppose 1= (0) and 3, b 2 and 
let iE { 1, 2, . . . . Cl-l} andjE (1, 2, . . . . vi+r }. Write the ih and (i+ 1)th row 
of U like this, where d = vi+, -j: 

a, a2 *.* aj-1 Cj+l cj+2 ... C",, 1 

Cl c2 ... Cj- 1 Cj b,b, ... b,. 

Suppose one has 

al<a2-c “. <aj-1<Cj+l<Cj+2< ... <c,,+, 

/A /A IA v 

c1<c2< ... CCj-1 < cj < bl < ... <b, 

cFR sgn(a) . (VI T) E ((VI W) I (V, W) E BTP(y, 6) for some p t-n 

withp>v),.lA. 

Here R= {YES”,,, Icr(l)<a(2)< ... <o(j) and a(j+l)<.(j+2)< ... < 
o(vi + 1)} and U” is the tableau obtained from U by replacing, in the ith 
and (i+ 1)th row, cI by c,(~) for all 1. Observe that U” cr U if c # 1. 

In case T= T” the span is zero. 
Similar results hold for the place side. 
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(b) (Cl93 or [12]) If A=(O) then 

(Ul TIE ((U T)I VESmY)Y Vd, W,.IA 

+((V)W))(V, W)ESBTP(y,6)forsomept-nwithp>v)..,A. 

In case T = T, the second span is zero. 
Similar results hold for the place side. 

(c) (Compare [ 121.) Suppose U is standard. If 1= (0) or the entries 
of U are mutually distinct then C,( U)( UI T) = (T,,,, 1 T). If A= (0) and 
U’ E ST”(y) with U’ >c U then C,( U)( U’I T) = 0. 
Similar results hold for the place side. 

(d) (Cl91 or Cl21.) {(SlT)I(S, T)EU,,,,SBTY (<r, Gs)} is an 
A-independent system. 

(e) (Compare [l], or see below.) Put CI=(A,, A,, . . . . Ax,, O”l-“I), 
B = v\% as partitions. Suppose there is an i6 ( 1,2, . . . . v”, - 1 > such that 
Bi#O, Pi+lZO, and vi+1 >oli, (i.e., the ith and (i+ 1)th and (i+ 1)th row 
meet). Let Jo { 1, 2, . . . . /?i+l} with j>a,--acci+, and write the ith and 
(i+ 1)th row of U like 

a1 a2 .‘. a, cj+, ci+2 ... 
Cf 

ClC2 ... cj-e Cj- e+l ... cjp 1 cj b, b, ‘.. bd , 

where d=Pi+, -j, e=j- 1 -(Ei-Mi+l) andf=/?,+j-e. 
Suppose one has 

aI < a2 -c ... -c a, -~c~+~<c~+~< . . . < Cf 
/A /A /A v 

c, <c*< “. CCj-e<Cj-e+, < ... <cj-,< cj < 6, <b2< ... <b, 

then co E R sgn(a)( U”/ T,,,) =O. (This generalises (a) in case A= (0)) 
Here R= (cr~S~I(~(l)<a(2)< ... <o(j) and a(j+l)<a(j+2)< ... < 

a(f)} and U” is the tableau obtained from U by replacing, in the ith and 
(i+ 1)th row, cI by c,(~) for all I. Observe that U” <, U for (r # 1. 

Always, (Ul TviI)~ ((VI TV,,)1 VESWIJ), v<, U),.lA. 
And { (Sl T,,,) I SE ST\’ ( <Y)} is an A-independent system. 
Similar results hold for the place side. 

(f) (Compare [6], [7], and [l], see the second chapter for the 
relevance of the latter.) Put c1= (x,, I,, . . . . I,,, Oy’-Lt) and p= ?\I, as 
partitions. Suppose there is an in { 1,2, . . . . vi - 1 } such that pi # 0, pi+, # 0 
and iji, > cli (i.e., the ith and (i+ 1)th column meet). Let Jo { 1, 2, . . . . fli+ ,} 
be such that j> ~1, - ai+, and let ke (0, 1,2, . . . . pi+ i -j} and write the ith 
and (i + 1 )th column of U like 
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C Ifk 

b, 

bz 

kf 

c/ 

Suppose one has 
Cl 

/A 

c2 
IA 

/A 

aI < Cj-e 

/A IA 
a2 <Cj-r+l 
IA /A . . . . . . . . 
/A IA 
a, < Cj-l 

/A 
Ci+k+l 2 c,. 

IA II 

c,+k+2 cj+l 

/A II 

Cj+k 

b^, 

/A 

bz 
/A 

/A 

cr 

/A 

bd 

Then COEBr(r-( q I T)=O. 
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Here Q is a transversal for S,/S,, where m= bd and EE (N,)m is 
such that E/ = # {t ~fl c, = /} all ZE m. And “U is the tableau obtained 
from U by replacing, in the ith and (i+ 1)th column, c, by c,(~) for all 
t of. Observe that a, < cj+ k+ 1 and “U cc U for c $ S,. In order to define 
r,EZ.l, let A, “A, B, OBEY be such that A,= #(t[~~=/}, “AI= 
#{t~f\j+klc,(,)=Z}, B,=#{t~dlb,=Z}, and”B,=#{t~j+klc,(,,=I), 
for ZE-~. Then 

Moreover (Di I T)E ((IA I TISEST,,~(~), S6, U)z.IA, and 

(Ial I TIE ((ial I WI ~~S~“\?~), w<, n,+. 

Also, { IZl 1 f,,,) I SE ST” (<r)} is an A-independent system. 
Similar results for the place side. 

(is) (compare E7l.j DAK f,,JCf,,,l V= (VI TIT 

DL(U, ~,\J(~,\i. I 77 = (EI I z-1. 

Similar results hold for the place side. 

Remark. The reader is not supposed to understand the proofs of the 
above results except the following. The formula in (e) implies the result for 
(UI TV,,) and the formula in (f) implies the first result about (UI T,,,). To 
see this observe that when in a bitableau there is a tableau with two equal 
elements in one of its rows then its bideterminant is zero. Also rearranging 
in a tableau, in a bitableau, the elements of one of its rows in increasing 
order makes the tableau smaller, if something has happened, and changes 
the bideterminant by the signature of the permutation used. Hence, for 
arbitrary U, (VI TV,J= k( WI T,,J, where W<,U and either W is 
standard or the formula in (e) applies to W. In this last case the formula 
implies (WIT,,JE ((VlT,,,)l V<, W and either V is standard or the 
formula is (e) applies to V)z iA. Hence, by an induction argument 

(Ul T”\JE ((U T,,,)I J+S7YY)? Vd, w,+. 

Concerning (f) one can argue in a similar way with the difference that now 
the column lexicographic order is important and rearranging elements in 
columns of the symmetrised tableau does not change the symmetrised 
bideterminant. 

We shall also assume that the reader is able to prove (g). 
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We shall now make the connection between [l] and letter place 
algebras. Let v I- 12, (I E N ,,, a<n, l.+a. Put cl=S\x and fi=v\& as par- 
titions. Define natural transformations @ YL, na1 + ( - )@(n-o) -+ @Ji 1 Sh 
as follows. Define the first one by (m, j E M all i, j): 

i=l 

And @I i xi, for xi E Me’ a1 all i<v,, means the image of x,0x2@ ... Ox,, 
in M@‘(“-‘). Define the second one by (mi E M all i): 

m,Qm,Q "' Qmn-oH @ (m,,j.m2,j- . . . .mg,j), where for all (i, j), 
j=l 

m, j = m,(, jI with I(& j) = Ct(L{‘- ’ ak +j- (v”,(,j) - cl,(i,j)), where ?I(&j) = 
vi- pi+ i. To understand this second map imagine the elements m,, m2, . . . . 
rnnea are the entries of a tableau of shape v”\x, 

mlmz ... m,, 
m cq+1 ... m Y,- I 

a1 + a2 
. 9 where c= 1 ai. 

i=l 

m c+l ... m n--o 

Then the second map constructs for each column the product (in the 
symmetric algebra) of its entries and then constructs the tensor products of 
the results. 

Let us denote, as in [ 11, the composition of the above transformations 
by d,,x then by Theorem 1.1 (c) there is a commutative diagram, for each 
t-E Nl, 

where, of course, f and g are the natural A-linear maps defined by 
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respectively 
ml,j J 

VI %,j J 
0 (e,,,j'e,,j"'e,,,)H~ . . . 

i :i 

. . 
j=l .I . . 

ml$i j 

Here n,,j, mi,jE { 1,2, . . . . Y} all i, j a?d (ei, e2, . . . . e,) is the natural basis 
ofA’. By Theorem 1.1(e), Im C,(T,,,)= ((Sl T,,-JISEST”\’ (<T))~, 
which is (universally) free by Theorem 1.1 (e). Slightly generalising [ 11: 

DEFINITION. Let v and A be Young diagrams with ~11, then 
S >\” := Im(d,,x : A-mod +A-mod), and S>” shall be called the (skew) 
Schur functor for the (skew) diagram v\n over A. 

Observe that the image of S>‘” is indeed in A-mod because S>‘” is a 
functor and S>\“(M) is free of finite rank when M is. Also B@ SL” E 
S>\‘(B@-) for a unitary commutative A-algebra B. We shall drop the 
suffix “A” in S>” when there is no danger of confusion. Clearly S’(Am) = 0 
when 1, > m. 

EXAMPLES. S”‘) = S” and S(l”) E A” (the “extreme” cases). 

Remark. Sv’i(,‘) is the Schur module L,,r(A’) in [l], it corresponds 
to schur,(C\x) in [3], and, if i = (0), to w;(A) in [7]. Also S’= A” in the 
notation of [20]. We use Sv’i(,4’) rather than S”‘(,‘) to stay in line with 
the notation for Schur modules (or: dual Weyl modules, or: induced 
modules) in the representation theory of Gl(r, A), where A’ is the natural 
representation of Gl(r, A). 

Consider the diagram involving &,;(A’) for r = n - a. 
Clearly, ((Sl T,,l)lS~ ~\X(ln--a))A~:[S,_.]OACS.,sgnA asACS,-,I- 

module, where sgnA is one-dimensional representation of S, with as 
character the signature. Also ( (S 1 T) 1 (S, 5”) E BT( 1” ~ a) /I) ) A g A [S, _ J @ 
aCsll tri”A as A [S, _ J-module where t,ivA is the trivial representation 
of s,. 

CONVENTION (Notation as Above). We shall identify A [S,-,] @ aCs,1spn,4 

with the subspace of ai ,ai(,4flPu) corresponding to ((Sl fl;,l)l 
SE T”‘x(l”-“)),, via f: Similarly we identify A[A,-,] @ ACsa, trivA with 
the subspace of Qj SB~(A”-a) corresponding to ((Sl T) 1 (S, T) E 
ml”-“, &)A. 

So there is a commutative diagram: 

~CL,lO A~S.,Lgn~) et\; 

I 

ACsn-ol 0 ACSg](frivA) 

” 

I 

z 

((SI~p,l)ISES~‘I(l”-U)) cP(Fi\l) A’ ((SlT)I(S, T)Em1”-a)),4. 
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By Theorem 1.1(e), Im C,(?s,r)= ((Sl T,,,)ISES~\~(~~--~))~ which is 
(universally) free by Theorem 1.1 (e). 

DEFINITION. Let v and 1% be Young diagrams with v 3 i, then 
K,,(A) := Im(e,,d, and y”,,(A) is called the (skew) Specht module of 
S,-, for the (skew) diagram v\;l over A. It is denoted by S”” in [ 141 and, 
when A= (0), by y”(A) in [7]. 

PROPOSITION 1.2 (Compare [I] and [20]). Let v and J. by Young 
diagrams with vs A. Put LX = (A,, A,, . . . . A;,, Oilpxl) and b = v\A, as parti- 
tions. Then ker d,,,(M) is generated by all the elements: 

JR sgn(a)(x, 0 x2 0 . . . 0 xi-, 

@ (a~ A a2 A “’ A up A C,(j+ I) A Cn(j+z) A ... A C,,f,) 

@(C,(,, A c,,2j A ... A cocj, A b, A 6, A ... A bd) 

ox,+20 ... Ox,,), 

where i, j, I-T, d, e, and f are as in Theorem 1.1 (e), xk E AD,(M) for all k, and 
al, a2, . . . . a,, cl, c2, . . . . cry b,, b2, . . . . b,EM. 

Proof. Consider the diagram involving td,,n(A’) and C,(?“,,). By 
Theorem 1.1 @arts (c) and (e)), ker C,(T,,,) con\ains the elements 
C, sgn(o)(U”I T,,,). But by Theorem 1.1(e), Im(C,(T”,,)) has as basis 
{(Sl T,,,)ISEST”” (<r)}. Hence by the remark following Theorem 1.1, 
ker C,(?“,;) is generated by the elements z sgn(a)(U”I ?“,i). By the 
commutativity of the diagram the elements in Proposition 1.2 
generate ker(d”,,(M)), in case M=A’. The general case now follows 
immediately. 1 

1.2. The Filtrations 

The Schur functors turn up in a natural way studying symmetric 
powers. For this, first observe that there is an isomorphism of 
(graded) A[End,(A”) x End,(A”)]-algebras A,” r S(Am 0 AA”) given by 
(iI j)HeiOfj (iem, jen), where (e,, e2, . . . . e,) respectively (fi, f2, . . . . f,) 
are the natural bases of A” and A”. Here S(Am@A”) is, of course, the 
symmetric algebra of A” 0 A”. 

PROPOSITION 2.3 (Slight Refinement of [ 11, See Also [ 121). The 
functor Sn(-Q-): A-mod x A-mod + A-mod admits an explicit filtration by 
subfunctors: 

S”(-Q-)=L”‘3L& . . . 3Lp’+‘=o 



SCHUR AND WEYL FUNCTORS 87 

with IEN, p’<p*< ... -C pi are all Young diagrams for n and for all ic! 
there is an equivalence 

SD Q s”’ .q pfp”‘. 

Moreover for each VF- n, @ “;‘= r S’l : A-mod -+ A-mod admits an explicit 
filtration by subfunctors: 

with m E N, I’ < ,I* < . . . < 1” are all elements of { 3, t-n Ix t> v> and for all 
i E m there is an equivalence, 

where Fi is the constant functor with value the free A-module of rank 
#ST’.‘(v). In case v = (l”), S, acts by natural transformations on 
@Ji S”‘= (-)@“’ (by permuting the tensor factors), and the K” can be chosen 
to be S,-invariant such that the S, -action on K’YK”” corresponds to an 
action on Fi turning its value into the 9$(A). 

Proof Let p t-n and let ‘pr = cpJM, N) : @f’ 1 A”(M) @ @ !L-, Aa 
+ S”(M@N) be the natural A-homomorphism defined by 

0 (ql A mi,2 A ... A m,,)@ @ (ni.1 A ni,2 A ... A ni,pi) 
I I 

I+ II det((mi,,Qn,,),,.,) 

for mi,,EMand n,,ENall i, r,ands. 
When M and N are A-free modules of rank r respectively s, then ‘pp 

corresponds to the A-linear map (see above the definition of S”‘“): 

((sl fJlSE TM (<r)),Q ((?,,I T)l TE Tp (<s)>, 

+ (SIT)I(S, T)E U BTp(<r, GS) 
( u-n > A 

defined by (Sl ?JS(?‘,,l T)I-+(SI T). 

Mmover qJx 0 y ) E C, , p Im cpr for every generator x of ker d,(M) 
described in Proposition 1.2 and every y E ai Api( by specialising 
Theorem 1.1(a). 

Similarly vp(x QY) E C,, p Im 4p5 for every generator y of ker d,(N), as 
described in Proposition 1.2, and every x E oi Apz(M). 

607/90/,-7 
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Hence, the quotient homomorphism rpfi : oi ,4@(M) @ mi /ill(N) -+ 
S”(~QN)E,>, Im cpr factorises through a natural map cP : P(M) @ 
Sp(N) + S’YMQ WL,, Im (Pi. When M and N are free A-modules of 
rank r respectively s, the cI1 coresponds by Theorem 1.1 (b) to the A-linear 
map, 

-+ (SlT)l(S, T)E u SBT (<r, <s) 
( r<p > A 

definedby (S(T,)@(T,lT)t+(SlT). 

This however is by Theorem 1.1(d) an isomorphism onto its image. It 
follows that cP is an isomorphism onto its image in general. Observe that 
‘pciO, is surjective hence C, Im (pP = S”(M@ N). Observe that the definition 
of fPp actually defines a natural transformation @jr : mi ,4Pi(() 0 
mi A”‘(-) -, P-Q-). H ence, c, generalises to a natural transformation 
c~:spQsfi+s”(-Q-)~r>p Im @, which is an equivalence onto its 
image. Hence, put Lp = Cr,p Im @,, then the Lp make up the desired 
filtration. 

Concerning ai Svz observe that there is an equivalence 

0 6 s*jr Y-c&4”) 
(a,,cq . . M”)f=li i= 1 

defined for M by C, oi nq= i mi, j ++ C, n, j (m, j@ e,), where m, j E M all 
i, j and (e,, e,, . . . . e, ) is the natural basis of A”. For M= A’ this map 
corresponds to the decomposition according to place content, 

@ ((slT)I(S, T)EBT)EBT(<r,a)), 
a 

= (S(T)I(S,T)E u BF‘(<r, <a) . 
( P+-n > A 

From the construction of the filtration for S”-@-) it now follows that the 
desired filtration for @,P is obtained as the “summand” of the one 
for S”(-@A”), the summand corresponding to o! = v. The dimension of 
the values of the constant functors follows from Theorem 1.1 (parts (b) 
and (d)). 

The filtration for v = (1”) given above has the desired properties. 1 

Remark. As a direct summand of the filtration for oi P(A”) there is 
a filtration for A[&] 0 ArsV3 tri”A, corresponding to latter Content (l”), 
which is in fact Young’s rule in [7]. The special case v = (1”) yields a 
bimodule filtration for the group ring A[S,]. 

The way skew Schur functors arise is: 
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THEOREM 1.4. Let v + n, L E A-mod. 

(a) (Slight refinement of Cl].) Th ere are explicit subfunctors Fk 
for kE (0, 1, 2, . . . . n} of S-O-) : A-mod x A-mod + A-mod such that 
Q i = ,, Fk = S”(-@-). And such that for each k, Fk admits an explicit filtra- 
tion by subfunctors, 

.@I+1 Fk = GA’ -J G”’ 2 . . . G” =o 

with l(k) E IV, 2’ < A2 < . . . < 1’(k) are all elements of { A+ k 1 v” I A} and for 
all iE l(k) there is an equivalence: 

S”‘@QS”\“‘~G~‘/G”‘+‘. 

(b) Suppose there is an exact sequence 0 + N + M + L + 0 in A-mod 
then S”(M) admits a natural explicit filtration, 

S”(M) = pp’ 3 pp2 3 . . . 3 pr” ’ = 0 

with IEN, p’<p*< ... <pi are all elements of I=UEzO {p+--k[IIp} 
and for all i E 1 there is a natural isomorphism, 

SD’(N) @ S”“‘(L) r P~‘/P”‘+‘. 

Here “natural” means natural with respect to commutative diagrams 

O-N-M-L-O 

I I I 
in A-mod with exact rows 

O-N’-Ml-L’-0 

Proof (a) For kE(O,l,...,n) put P(k)=(aEN,)“ICYIICli=k, 
tli < Pi all i}. For each LY E P(k) we shall define a natural homomorphism, 

db,= db,(N, L): & Aa(N)@ & Asi(L) + S”(N@ L), 
i=l i=l 

where fli=Ji-cri all i. To do this let b,: OrllA”l(N)~,Orl,ASi(L)~ 
@ 1; 1 A”$N@ L) be the natural A-homomorphism defined by 

for ni,i E N and I, j E L all i, j. 
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Now put db,=d,(N@L)ob,: Oi~al(N)OOi/iBi(L),SY(NOL), and 
put K/c = C,, PC/~) Im db,. The Kk is clearly a natural submodule of 
SY(N@L) and x:=0 Kk = S”(N@L). By the following claim this sum is a 
direct sum. Let k E (0, 1, . . . . n} and let A+ k be such that v” 11, then by bA 
and dbA we shall mean 6, respectively db, with c1= (A,, I,, . . . . AX,, Ovl-rl). 

Claim 1. For all a E P(k), Im db, c C, c k, 5 ~ oL Im db,, especially 
&=Cl+k Im dbn. Moreover xi=, Kk = @zzO Kk( = S’(N@L)). 

Proof of Claim 1. Clearly one may assume that N and L are free 
A-modules, of rank r respectively s say. But in that case db, corresponds 
to the A-linear map (see above the definition of S”\‘), 

((sli‘,)lsETa(~P))AO((VI~i,z)IVETi’z(~S))A 

~(ulT,)IUEr(~(r+S)))A 
defined by (Sj ?JO (VI fc,*) H (Sr,( V) 1 T,-). 

So the image of db, corresponds to 

which are at most r is a ) A. 

By Theorem 1.1 (parts (a), (b), and (d)) the assertions follow. 

Claim 2. Let 1 I-k be such that c =) I, and put fl = ?\A. Then 
dbnb)~C,,+,.. Im db, for all XE ((@:i, A”‘(N)@Ker dj,,(L))u 
(Ker d,(N)@ @IL1 Apt(L))). 

Proof of Claim 2. We shall do the case x E 0, .4”‘(N) @ Ker d,,,(L), 
the other case can be handled similarly. So let y, E A”(N) all I, and let z be 
one of the generators of Ker d,,,(L) described in Proposition 1.2, say z 
corresponds to (i, j), here i refers to the ith row and j to the jth column, 
see Theorem 1.1(e). Then b,( @ I y, 6 z) looks, at first glance, like a 
generator of ker d,(N@L) for the same pair (i, j) as described in 
Proposition 1.2. If it is such a generator then db,( 0, y, @ z) = 0 so we are 
clearly done then. However, this only happes when i > 1,. When i < I1 then 
dA( @, Y,@ z) only involves permutations which permute elements of L 
whereas the corresponding generator of Ker d,(N@ L) also involves 
permutations which interchange elements of N with elements of L. But 
fortunately these extra terms correspond to terms in x:orEP(kj, cr,l Im b,. 
Hence their d,(N@ L)-images lie in C, ++ ~, A Im db, by Claim 1. But 
clearly d,(N@L) (b,( 0, y,@z) + extra terms) = 0, so db,(x) is in 
c T ~ k, ~, 1 Im db, as desired. 
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BY Claim 1, Crck,r,i Im db, is a natural submodule of Kk for every 
1, + k, for all k. By Claim 2 the quotient map 0, n”‘(N)@ mi Asi(L) + 
KkE f ++ * ,1 Im db, induced by db, factors through a natural 
A-homomorphism: 

cA : S”(N) 0 S”‘(L) + Kk ! 1 Im db, 

Claim 3. For all A+ k with ? 3 1, c1 is an isomorphism onto its image. 

Proof of Claim 3. Clearly one may assume that N and L are free 
A-modules, of rank r respectively s say. From the proof of Claim 1 it 
follows that, by Theorem 1.1 (b), cl corresponds to the map 

((SIT,)ISEST~(~~))~O(VIT,,~.)IT~ES~\~(~~))~ 

+ ((U 1 T;) 1 U E ST”( 6 (r + s)), the shape of the entries of U 

which are atmost r is A), 

defined by (Sl TJO(JA T&H (~o~v~I T,-). 

By Theorem 1.1, parts (d) and (e), this latter map is an isomorphism onto 
its image, as desired. 

Observe that the definition of db, defines in fact a natural transformation 
DB,: 6?Ji Aa 0 oi API(-) + S”(-O-). Hence, Kk generalises to a sub- 
functor Fk of S”(-@-). And cI generalises to a natural transformation, 

which is an equivalence onto its image. Now put G” = C, c k, rz, 1 Im db, for 
all A&k, kE{O, l,..., n}, then the G”‘s make up the desired filtration. 

(b) Let 0 + N 4 ML L -+ 0 be the exact sequence. The map 6 
splits by an A-homomorphism. Now using y and this splitting one can 
define, in a similar way as in the proof of (a), the maps b, and db,. 
However, b, and db, are not natural maps in general, and Kk and 
C,, 1 Im db, are not necessarily natural submodules. But the first two 
claims remain valid. Moreover when 

O-N-M-L-0 

If lg I* 
O- N'----+M'---+ L'-0 
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is a commutative diagram of A-homomorphisms, with 
each ,u~Zand each XE @,“i, n&(N)@ @y;i LIP(L), 

r/ \ 

exact rows, then for 

1 
s’k)W,W = db, L(o n@‘(S)@ @ npl(Zz)) (x)1 +y with 

.i I 

YE i 1 Im db, and /?= v”\p. 
m=k+l asP(m) 

Hence, Crel,i,p Im db, is a natural submodule of S”(M) for all p E Z and 
by Claims 1 and 2, db, induces a natural A-homomorphism, 

Sp(N)@ Tic (L) -+ S”(M) 1 Im db,. 
rEI.?>p 

Now replace c1 and I in Claim 3 by this map respectively ,n then it remains 
valid. Hence, put Pp = C, E t, ~ p p Im db, then the Pp make up the desired 
filtration. l 

Remarks. (1) Theorem 1.4 generalises the well-known results for 
exterior and symmetric powers (the cases v = (1”) respectively (n)). 

(2) Theorem 1.4 can be generalised to skew Young diagrams. For 
this, let m E { 0, 1, . . . . n}, i + m, v 3 1 and replace S” by S”“, (0, 1, . . . . n} by 
(m, m + 1, . . . . n}, @;I-zo by @;=,, {A-Wv”A} by {wWv”d}, 
S”‘by S”\‘and Zby Uz=, {puk[Iv”pxI]. A proof can be given in a 
similar way, compare [ 11. 

Modules for skew diagrams were defined first in characteristic zero by 
prescribing their composition factors. Hence, a convincing argument for the 
adjective “skew” is a universal filtration for skew Schur functors with 
(ordinary) Schur functors as subquotients. 

THEOREM 1.5. Let a E N, v I- n, 1 I- a, suppose v 2 1, and put /I = v \ I 
(us a partition). Then S”\” admits an explicit filtration by subfunctors, 

s’\i = NT’ I3 NT2 3 . . . 3 NT’+’ = 0 

with IEN, T’<,T’<;.. cr T’ are all elements of L = ( TE STp(/?) 1 p I- 
(n - a), cpf,J T) E ST”\$0i)) and for all i E:! this is an equivalence, 

s”’ q NT’INT’+‘, where pi is the shape of T’. 

Here ‘P:,~: ST#(/?) + TU\“(ji) is the map defined by the following: for every 
TE Sr(b) and every j < S, the jth-column of q:,,(T) contains exactly the 
numbers of the columns of T containing j arranged in (weakly) increasing 
order from top to bottom. See Remark 1 below the proof of this theorem 
concerning this map. 
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Proof. Let TE L and let ~1 be its shape. Let [v”\x] denote the tableau 
of shape ?\ 2 such that [v’\lli, j = (i, j) all i, j, so the entries reflect their 
slots. Let [p] of shape p have a similar definition. Let E(G\X) and E(p) 
denote the set of entries of [?\I] respectively [,u]. 

First we construct a bijection fr: E(C\x) 3 E(p) such that for all i, j, k: 
#(fr(ith row of [J\l])n (jth column of [PI))< 1, andf,(kth-column 
of [?\I]) = the set of slots in T containing k. 

Put Y=cp:,;(T) then the elements in the first row of Y, so 
Y ,,x, + i, . . . . Y,,,,, are numbers of columns of T containing the entries 
x, + 1, I, + 1, :.., c,, respectively. These latter entries are, because Y is 
standard, bottom elements in their columns, say their slots are 
xx1 + 1, .‘., xx2 + 1, . . . . x,, , respectively. 

Set fA(L A) = j f x or all Jo (1, + 1, . . . . v”i}. We proceed with the entries 
of T which are left now. The entries in the second row of Y determine 
a new sequence of bottom elements and their slots shall be 
fT((Z 12 + l)), . ..J-A(2. &)I, as we did with the first row of Y. Continuing 
this way we find the announced bijectionf,. It is the inverse of the one in 
[8, p. 1691. 

For id v,, put Qi =fT(ith row of [v’\x]), so E(p) = JJi Q;. Order the 
elements of Qi by :x < y of; ‘(x) <f;‘(y) in lexicographic order. 

ForjEbi and iEV”, put Q,,,=Qin(jth-row of [.?I) so Qi=IJjQj,jalli. 
Let for a set Q, S(Q) denote the symmetric group on Q. Put for i < vi, 
Pi= {~~S(Q~)lfor all j and all x, y~Q~,~:~,<yoo(x),<o(y)}, and put 
P = n:L, Pi. Let for all p E P, Tp be the tableau of shape p such that for 
all i< v1 and all XE Qi, (Tp), = Tplcn.). 

Now let 6,: OF= I A”)(M) + S”-O(M@A”) be the natural A-homo- 
morphism defined by 

a- C %ntP).cp, a@ 0 bh., A e(TPb,2 A ... A (ecTeb,,) , 
PEP ( i 

/ 
) 

where (e,, e2, . . . . e,) is the natural basis of A” and ‘pp is the natural 
A-homomorphism in the proof of Proposition 1.3. Then the image of 6, is 
contained in the image of the natural injective A-homomorphism: 
OF!, Sp(M)-+S”-“(MBA”) defined by 0, (mi,l .rni.]. ... .rniJw 
ni((mi,,0ei)‘(mi,20ei). ... .(mi,8,@ei)), for mj,jEM all i andj, simply 
because the content of T is ,4. 

In order to understand “b;‘: oj ,4’+(M) -+ oj @l(M) we shall describe 
it in the case A4 = A’. In this case the map corresponds to (see the proof 
of Proposition 1.3) 

<(VI fJl Tp (Gr)) A+((UIW(U, UEBT(G~,B)), 

defined by (VI ?p)t-+&EPsgn(p).(UJ Tp). 
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Claim 1. (a) If TEL then CpeP sgn(p) . (VI Tp) is contained in 

((SIT,,,)ISES~‘~(~~))Z.,~ for all UE Tp (<I). 

(b) If TEL and UEST”” (<r), then CQSpsgn(p).(UITP)= 
(UIT)+Cb,,(VI W) for certain b,,.~77~1~, where the sum is over 
Z(U,T):={(V, W)ESBT(<r,P)IW>,.Tor (W=Tand V>,U)}. 

(c) (Converse to (a) and (b)). Let 0 #XE ((Sl T,,,) 1 SE ST’\” 
(Gr)>, and write x= a uf, TW’I T’)+Ca,,,Wl W for ~u~,T~~~\PL 
a U,W E A all (V, W), where (U’, T’) E SBT (<r, /?) and the summation is 
over Z( U’, T’), see (b). Then T’ E L. (One can write x like this by 
Theorem 1.1 (b) and the expression is unique by Theorem 1.1 (d).) 

“Proof” of Claim 1. Parts (a) and (b) can be proved with similar 
techniques as [S, (11.21) respectively (11.22)(l)]. Part (c) can be proved in 
a similar way as [S, (11.13)] because of Theorem 1.1(f). 

By specialising Claim l(a) we find that Im b, is in fact contained in 
S”‘l(h4). 

Claim 2. (a) CTEL Im b,= S”\“(M). 

W bT(Kerd,(M))cCv,~.Imbv. 

Moreover let 6,: oj Afi() + Sy\“(A4)/cy,c T Im b, be the map induced by 
b,, then 6, factorises through a natural map 

cT: SF(M) -+ S”\“(M) 
i 

c Im b, which is an isomorphism onto its image. 
V>, T 

Proof of Claim 2. Clearly one may assume that A4 is a free A-module, 
of rank r say, so we can use the description of b, just above Claim 1. 

Let us say that for the XEN:=((SIT,,~)ISEST”\’ (<r)),,, in 
Claim l(c), (U’, T’) is the leading bitableau of x with coefficient bus,.,. 
Then by applying Claim 1 (parts (b) and (c)) repeatedly one finds that 
XV>, T Im b, is generated by all elements of N with leading bitableau 
(U, W) with coefficient 1 for some (U, W) E SBT ( d r, B) with WE L and 
W>, T. 

Hence, (a) follows from Claim 1 (c). Moreover, select for each UE STp 
(<r) an element of N with leading tableau (UI T) with coefficient 1 (this 
is possible by Claim 1 (b)), then the classes of these elements form a basis 
for Im 6, by Theorem 1.1 (parts (b) and (d)), which we will use below to 
prove (b). 

But one can also. use parts (b) and (c) of Claim 1 to show that 
bT(CaaR sgn(4WlTJ) = C,,Rsgn(a)C,..(U”ITP) E CY2,T1mdv? 

where we use the notation from Theorem 1.1(a), (with v replaced by p 
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there). By the proof of Proposition 1.2 (with v replaced by p and L = (0) 
there) one now sees that b,(Ker d,(A’)) c CV,, T Im d,. 

Hence, the factorisation of bT, moreover cT( Ul r,) is by Claim 1 (b) an 
element of N with leading tableau (U, T) with coefficient 1, for all UE STP 
(<r). Hence, the latter elements form a basis for Im 6,, and since the 
(UlT,) generate ((UlT,)I UEST~ (<Y))~ by Theorem 1.1(b), we have 
proved (b). 

Observe that the definition of b, defines in fact a natural transformation, 
B,: 0, Afl~ + S”-0(-@An). H ence cT generalises to a natural transforma- 
tion, C,: S” + Sy\i./cy,~ T Im B, which is an equivalence onto its image. 

Now put NT = CVbr T Im bV then the NT make up the desired liltra- 
tion. 1 

Remarks. (1) One can define (P:,~ on tableaux of shape p of which 
the elements in each column weakly increase from top to bottom. This 
extension is a bijection onto its image, the inverse has a similar definition 
and is used, and denoted by (pp, in [8, p. 1701. 

(2) Theorem 1.5 together with Theorem 1.4(a) describe S-O-) for 
a Young diagram v, by means of a filtration with a subquotients tensor 
products of Schur functors. Especially, one obtains a filtration of the Schur 
module SY(Ak) for GZ(k, A) over A (k E N,,), when it is seen as a representa- 
tion of a subgroup of type GI(I, A) x Gl(k - 1, A), (embedded as diagonal 
block matrices), in terms of tensor products of Schur modules. So we 
obtain a generalisation of the classical branching rule for Gf(k, A) to 
arbitrary commutative rings A with 1. A a summand for k = n (n is 
such that v F---n) one finds a generalised Murnaghan-Nakayama rule by 
projecting on “letter content” (1”). The Murnaghan-Nakayama rule 
describes the restriction of Specht modules for S, to (Young) subroups of 
type Sk x S, ~ k in terms of Specht modules. So we have generalised [ 141 to 
any commutative ring with 1. In a similar way one derives a generalised 
Murnaghan-Nakayama rule for generalised Specht modules, as mentioned 
in [16]. 

COROLLARY 1.5 (Compare [S]). Let m E N’, A + n and p km. Then 
S” Q Sp: A-mod + A-mod admits an explicit filtration by subfinctors, 

S”QS”=L=‘~L=*~ . . . 3~=‘+‘=o 

with IE N, T’ cc T2 c-C :. . cc T’ are all elements of {T~ST”(w\p)lvk 
(n + m), cp”,,,( T) E ST’“\‘+‘(v”)} andf or all icj there is an equivalence 

S”% MT~/MT’+‘, where vi is the shape of T’. 

Here P = (P, , ply . . . . PI)+- W.pLI) andw = h + 4, IQ + A,, . . . . p1 + &, 
pl,pz ,..., ,u~,)I---(n+m+k.p,), where k=a,. 
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Prooj The skew shape &\p looks like 

so the rows of “x” do not meet those of “ii.” Hence, s” @ S’ z Pip, so 
apply Theorem 1.5. 1 

Remark. (1) For the connection between the tableaux parametrising 
the subquotients, [5] and lattice permutations see [S]. 

(2) Corollary 1.5 generalises, and its proof as well, to skew Schur 
functors. 

Corollary 1.5 implies a filtration of the tensor product of Schur modules 
s”(Ak)@Sp(Ak) for GZ(k, A) over A with Schur modules as subquotients. 
So one obtains a generalisation of the classical Clebsch-Gordan rule for 
Gl(k, A) to arbitrary commutative rings A with 1. Also by the proof of 
Corollary 1.5, S’(,4”+m) 0 ,!?(A’+,) E S”‘p(A”+m), using the notation of 
Corollary 1.5. By projecting on “letter content” (ln+m) of S”\p(An+m) one 
finds the representation: Ind%;“s, (q.(A)@$(A)). So the filtration in 
Corollary 1.5 yields a filtration for the induced representation of S,,, with 
Specht modules as subquotients, by projecting on content (l,+,). Thus 
recovering the (generalised) Littlewood-Richardson rule for Specht 
modules in [8]. The induction S, x S, + Sn+,,, is adjoint to the restriction 
S n+m’SnX&, this is nicely reflected by the proof Theorem 1.5 and the 
one for the Littlewood-Richardson rule in [S]: the proofs use bijections 
inverse to each other. 

II. FILTRATIONS INVOLVING WEYL FUNCTORS 

We will now introduce another kind of letter place algebras, based on 
the exterior power as opposed to the symmetric power which is basic for 
the letter place algebras in the first chapter. We shall derive combinatorial 
results for these new letter place algebras analogous to those for ordinary 
letter place algebras. A non-characteristic-free start was already made in 
[ll]. With these results we construct filtrations analogous to those in the 
first paper, but now involving Weyl functors instead of Schur functors. 

The Weyl functors are the contravariant duals of Schur functors, this 
notion of duality shall be defined below. Over algebras over the rationals 
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the corresponding Weyl and Schur functor are equivalent. But over 
algebras over a finite field, for example, they differ significantly in general. 

Since Weyl functors are contravariant dual to Schur functors, the 
existence of filtrations involving Weyl functors follows in many cases 
from the corresponding one involving Schur functors. As before, it is the 
explicitness which is the main point about the filtrations. 

We finish with a sketch of another natural kind of letter place algebras, 
based on the divided power, and show briefly its relevance for Weyl 
functors. 

II.1 The Combinatorics 

DEFINITIONS. Let n, m E No, then nm A shall denote the quotient of the 
free non-commutative algebra with generators ]i 1 i[, for i E m and j E n, by 
the ideal generated by the squares. The class of ]ilj[ shall be denoted by 
[i) j], (i E m, j E n), and the “i” on the left shall be called a letter and the 
“j” on the right a place. And n,,, A shall be called the exterior letter place 
algebra for (m, n). The aldjective “exterior” is explained by the 
A-isomorphism nm Ar,4(AmOA A”) defined by [ilj]Hei@fj, for iEm, 
Jon, where (e,, e,, . . . . e,) and (fi, f2, . . . . f,) are the natural bases for A” 
respectively A”. Via this isomorphism “,A becomes an A[End,(A”) x 
End,(A”)]-algebra. One can define polarisation operators and decoulering 
on exterior letter place algebras as in [7]. We shall denote them by the 
same symbols because of the following lemma (“generic case”): 

LEMMA 2.1. Let k, m, n E NO. Then if k < n there is an A-isomorphism, 

AZ([a,Il].[a,12]. ... .[ak 

defined by 

n(aiIi)w[alll].[az]. ... .[aklk], forall 

QA lk] laiErn all 

a,Emalli. 

This isomorphism commutes with all (decoulered) letter polarisation 
operators. A similar holds, when k d m, for (decoulered) place polarisation 
operators with respect to the A-isomorphism defined in a similar way: 

$, (ilbi)lbiEnalli) ~([llb,].[2Ib,]. ... .[klb,]Ib,~r~alli).. 
A 

Hence, we can also define (decoulered) Capelli operator for ptandard 
tableaux and (decoulered) operators like D,(S, T,,,) and DP( T, T,,,) etc., 
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in a similar way. However, instead of bideterminants we shall use, what we 
shall call, bipermanents: 

DEFINITIONS. Let k, m, HEN, and (17, V)E&“) (am, Gn), (a one- 
rowed bitableau). Then we define: 

where R, is a transversal for Sk/H, ith H, = {CJ E Sk 1 UoCiJ = Ui for all 
in b} (the row stabilisor of U). 

Observe that permutations of entries in U do not alter [ UI l’] whereas 
a permutation of the entries of V alters [U( V] by its signature. In fact 
when V contains two equal entries then [ UI V] = 0. Also, when the entries 
of U are mutually distinct then [U(v]=C,.s,sgn(a).[U,I~~/,(,,]. 
CU,I cJ(2)1. ... . [U/cl bkJ so it can be seen as a determinant as well in 
this case. It should be clear now that results for letters do not necessarily 
imply similar results for places in exterior letter place algebras, as opposed 
to ordinary letter place algebras. 

Let, more generally, (ai, c(~, . . . . a,) + k and (U, V)EBTDL (Qm, <n). 
Then we define ~~l~l:=C~~.,I~~,,1~C~2,,l~2,,l~~~~~C~,,,I~~,,l~ 
where Ui,* and I’,,* denote the ith row of U respectively V. For skew 
shapes we view, as for bideterminants, the skew shape as a partition. 

Now [U 1 V] shall be called the bipermanent of ( U, V). 
Let (U, V) be a bitableau of shape a, possibly skew, Young diagram then 

GUI El1 :=cv-,” GUI UT and [ UI V] shall be called a symmetrised 
bipermanent. 

By [ q ) V] we shall mean CoEe sgn(o)D,(“U, f,,,)[?V,,l V], see 
Theorem2.2(g), where /?=(x,,x2, . . . . xl,,O”-“), Q=nIi, S({8,+ 1, 
pi + 2, . ..) ci> 1 and (“u)i,j = uo,(q., for all i, j. Here S(P) for a set P 
is the symmetric group on P. And [ q I T] shall be called an alternated 
bipermanent. 

The results in the exterior letter place algebras we need are (compare 
with Theorem 1.1): 

THEOREM 2.2. Let r, s E N, v, and I be Young diagrams with v2 il. Let 
y + n, 6 /= n, and (S, U) E BT”\“(y, 6). 

(a) (Straightening, implicitly in [ 11, see below). 
(1) Suppose one is in the situation of Theorem 1.1(a) with respect to 

U then 

~~~sg~(~)CSI~“1~~C~IW1I~~I~1I~~, W)~BT~(~,G)forsomep~n 

withp>v>z.lA, where R and U” are as in Theorem 1.1 (a). 
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(2) Suppose A = (0) and S, 32 and let in { 1,2, . . . . 9, - l}, 
je (1, 2, . . . . v~+~} and k~ (0, 1, . . . . vi+1 -j> and write the ith and (i + 1 )th 
row of S like 

aI al ... aj-l Cj+k+l Cj+k+2 
. . . 

Cf 

Cl c2 ... cjp, cj cj+ 1 ... cj+kblbZ...bd, 

where d= vi+1 -j - k and f = vi + k + 1. Suppose one has 

al<a,< .‘. < Yaj-ldcj+k+l~cj+k+2~ < ... <Cf 

A A . . . A VI 

c,<c,< ... 6Cjp1d cj =c~+~= ... =cj,k<b,<b2< ... dbd, 

then CvEP ro. [“S( U] E ([VI W] I (V, W)E BTp(y, 6) for some PI-n with 
P>V)Z.‘A~ where Q and r. are as in Theorem 1.1(f) except that the c,‘s are 
now in the i th and (i + 1) th and (i + 1) th row. Observe that “S cr S for 
o # S,, using the notation of Theorem l.l(f ). In case U = T,, the span is zero. 

(b) (Implicitly in [l], see below) 

where B,(y, 6)= ([VI W]l (V, W)EBT~(~, 6) for some p I-n with p>v, 
and W and V” are standard), 1A. 

Moreouer, [Sl U] E ([VI U] I VE T”(6), V6, S, V” is standard),.,” + 
B,(y, 6). When U= T,, B,(y, 6) = 0. 

(c) (Compare [ 121.) Suppose U is standard. Zf A= (0) or the entries 
of U are mutually distinct then 

C~(u)Csl VI = CSI T,,,l. 

ZfL = (0) and U’E T”(S) with U’>, U then C,( U)[Sl U’] = 0. 

(d) (Implicitly in [l], see below.) 

{ [Sl T] I (S, T) E u BY ( Gr, <s), S” and Tare standard} 
vcn 

is an A-independent system. 

(e) (Implicitly in [l], see below.) Put c1= (A,, &, . . . . Ax,, Oil-xI) 
and B = v\& as partitions. Suppose there is an iE { 1, 2, . . . . v”, - 1 } such that 
/3i# 0, Bi+l #O and vi+ I> cli (i.e., the ith and (i+ l( th row meet.) Let 
j~~i+~withj>~i-a~+,andletk~{O,1,...,~i+~-j}andwritetheithund 
(i + 1) th-row of S like. 

a, a2 ... a, Cj+k+l cj+k+2 
. . . 

Cf 

c1c2m’.C~-e Cj-e+l'*'Cj-l Cj cj+l ...~~+~b~b~...b‘, , 
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so the transpose of the situation in Theorem 1.1 (f ). Suppose there are 
equalities and inequalities as in Theorem 1.1(f) then C,,o ro. [“Sl Ty,n] =O, 
where Q and rg are as in Theorem 1.1(f) and “S has a similar definition as 
“U in Theorem 1.1(f) except that the c,‘s are in the ith and (i+ 1)th row. 
Observe that “S Gr S when o $ S,, where E is as in Theorem 1.1 (f ). Moreover 

[Sl T,,,] E ([VI T,,,] 1 VET”‘“(~), V<, S, V”isstandard),,,A, 

{ [Sl T,,,] ISE T”\” (Gr), S” is standard} is an A-independent system. 

(f) (1) Suppose one is in the situation of Theorem 1.1(f) with respect 
to U. Then CgEB [Sl q ]=O, h w ere Q and “U are as in Theorem 1.1 (f ). 
And 

L-Sl Lz 1 E <CSl q 1 I VEST”‘“(6), VG, wz+, 
{ [(Tj,,)tr( q -J 1 TEST”” (<s)} is an A-independent system. 

(2) Put a = (I,, I*, . ..) x,,, 0”-‘I) and /? = v\I, as partitions. Sup- 
pose there is an ie { 1, 2, . . . . v,-1}suchthatj3i#0,~i+1#Oandv”i+,>~i, 
( i.e., the ith and (i+ l)th-column meet). Let Jo {1,2, . . . . /?,+,} with 
j 2 Vi + 1 - cli and write the i th and (i + 1) th-column of S like 

al Cj-e+ I 

a2 Cj-rf2 

cj+ I 

Cf 

the transpose of the situation in Theorem 1.1(e). 
Suppose there are equalities and inequalities as in Theorem 1.1(e). Then 

IL,,-@j IUl=O, h w ere R is as in Theorem 1.1(e) and S” has a similar 
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definition as U” in Theorem 1.1(e) except that the c;s are in the ith and 
(i + 1) th-column. Observe that S” < (’ S for o # 1. Moreover, 

[~IU]E([OIU]IVETY”(~),V~,.S,V”~~~~~~~~~~)..,~, 

co IUIE(CO IwIW~S~‘Ya W~,w*.,4. 

(g) (Compare C71.) DP(K j‘~~\j.)[Sll=~\,l= CSI W 

DP(~, T,,,,)CSl TV,,1 = [St q I. 

DL(S, ?,,,)[f,,,l U] =H(S).[SI U], where H(S) is the product of the 
orders of the stabilisors of the rows of S (see the definition of one-rowed 
bipermanents). 

ProoJ: (a) (1) Suppose we have proved the result pith fV in the place 
of S (and ;1= (1”)). Then by applying H(S))’ . DL(S, TV), we see that we 
are done over Z, hence over A, where H(S) is the product of the orders of 
the stabilisors of the* rows of S (see the de$nition of one-rowed biper- 
manents). So let S = T,, and 2 = (l”), then [T, 1 Vu] and all the [VI W] in 
the span can be seen as bideterminants, see thf remarks about one-rowed 
bipermanents. The assertion about ,Z sgn(a)[ T, 1 UC] is a consequence of 
the Laplace expansion for a determinant corresponding to a division of 
columns in two groups (see [7] in case of doubt). The anti-commutativity 
of the exterior letter place algebras causes no problems. 

(2) As in the proof of (a)(l) we shall prove the straightening for 
a special case and derive the general case from it. 

Replace all the cI)s by c := Cj and let S be the resulting tableau on the let- 
ter side and let y^ the content of S. Let us denote the ith and (i + l)th-row 
of U by (xIxz... x,,,) respectively ( y , y, . . . y,,, , ) then 

[ 
ala2 . . . ajp,c . . . . . . . . . c x,x2 . . . x, 
c c ..’ c c ... cblb, .‘. b, y, y, ... y,,,, 1 

equals 

+ C w(5) w(a2) 
Glr”Z 

X 
[ 

cc ‘.. c YdI)Yo2(2) .” Yo*(j+k)Xbl(j) “’ xo~(v,) 
ala2 a*. aj- I X,,(1)X,,(2) 

. . . x 
w(i- 1) 

b,b, ... b, y a2(j+k+l)Yo~(j+k+Z) ..’ Yo~(Y,+I) 1. 
where the summation is over all or E (0 E S, ( O(I) <o(2) < . . . < o(j- l), 
o(j)<a(j+ l)< .‘. <a(vi)} and all ORE (~~~S~,+,Icr(l)<a(2)< ... < 
a(j+k), a(j+k+l)<o(j+k+2)< ... <fJ(v,+,)}. 



102 FRANK M. KOUWENHOVEN 

Hence, [Sj U] E ([VI IV] I (V, W) E BTP(y^, 6) for some PI---~ with 
P>V),.lA. By applying n,,,. Dz(Z, c) one finds the assertion for 
CoEa [“Sl U], where E is as in Theorem 1.1(f). In case U= T,, the span is 
zero since each WE BTP(V”) with p > v has two equal entries in one of its 
rows. 

(b) Follows from (a), see the remark below Theorem 1.1. 
(c) Can be proved in a similar (straightforward) way as 

Theorem 1.1(c). 
(d) Let us denote the system by Z and suppose there is a non-trivial 

relation C~s,nEl~s,r [S 1 T] = 0. Let To be the column lexicographic 
smallest element of ( TE u L1 ~ n STp ( <s) I a, T # 0 for some S}. 

Then by (CL 0 = C,(TdC a,,CSl Tl) = Cs a,,(SI T,,), where P is the 
shape of T,,. 

Claim. J := { [Sl T,] 1 SE Tj’ (<r), S” is standard} is an A independent 
system. 

Proof of Claim. Set K= { UE Tp (d r) ( in each column of U the 
elements are weakly increasing from top to bottom}. And let for UE K, 
[U] denote the “monomial”: 

Then L := ( [U] I UE K} is an A-independent system. And the column 
lexicographic order on Tp ( Gr) induces a total order on L. Now for SE Tp 
( <r) with S” standard write [Sl T,] as a linear combination of elements 
of L, then the smallest element of L which occur with a non-zero coefficient 
is [S], and its coefficient is in fact 1. The independence of .Z now follows. 

By the claim, a,,, = 0 for all S, which implies a contradiction. So Z is 
independent, as was to be proved. 

(e) The straightening can be proved in a similar way as that in 
(a)(2). The result for [Sl T,,,] follows from the first assertion in (e), see 
the remark below Theorem 1.1. And the independence system can be 
proved as that for J in the proof of(d). 

(f) (1) Concerning ihe first two assertions we may assume, as in the 
proof of (a)(l), that S= T,,A. 

Now the second map in Lemma 2.1 maps (?,,,I q ) to [?,,,I a] for 
all TE Y\’ (<S). Hence the first two assertions follow from 
Theorem 1.1 (f). The independence of the system can be proved in a similar 
way as that for S in the proof of(d). 
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(2) Concerning the first two assertions we may asume U= !‘,,, 

by (g). Now the first map in Lemma 2.1 maps ( Vtr I m) to [ q I ?,,i] 

for all I/E 7’“‘” ( <r). Now by Theorem 1.1(g), (V”I((i;,,)“() = 

D,(( ?V,Jtr, T&( V” 1 T,,,), for all VE TV\’ (<r). So the first two asser- 
tions follow from Theorem 1.1(e). Concerning the last assertion observe 

that the second map in Lema 2.1 maps (ml V) to [ml V] for all 

VE TyiA (<s). BY Theorem 1.1(g), (ml VI = DL(f’r,i, T,,J(T,,A I VI 

for all VE Y\’ ( <s). Hence, the last assertion follows from 
Theorem 1.1(e). 1 

Remark. The “missing” parts with respect to Theorem 1.1 are, in (e), 
results *for [(T,,x)t’I U] and, in (f)(2), and independence result for 
([I3 IT,,,JI~~~“(~r)). 

Now, starting with the later, the independence is not true in general but 
it is true when A is Z-torsion free, which shall be proved in the second 
paper. 

Concerning the elements [ ( T,,x)” 1 U], observe that there is an 
A-isomorphism 

([(T,,:,)“( U] ( UE T”” ( <A-))~ z & P(A”), where a = v\A. 
i=l 

Now see Proposition 2.3. 

We shall now make the connection between [ 1 ] and exterior letter place 
algebras. The connection is similar as for ordinary letter place algebras. 
Let Van, aENo, A+a and suppose veil. Put a=P\x and /?=v\n, 
as partitions. Define, as in [1], natural transformations @JL I DBj --t 
(-) @fl-a + 0;’ 1 /i”l as follows. 

Define the first one by (mi,jE M all i, j), 
Jt 

@ (m,,,(“‘.l) . mi,z(nO) 4 . . . . mi,p,(nJ~~l)) 
i= 1 

b-b 2 0 (mb,(l) 0 To,(2j 0 . . . 0 mi,oic8,J9 
d i 

where ni := (ni,l, ni,Z, . . . . niJ k fii all i and the summation is over all 
0 E nri, 1 R, with Ri a transversal for S,/S, for all i. And oi xi, for 
xi E iF@l all i < Fr, means the image of x1 @I x2 @ . . . Ox,-, in M’s’(“-n). 

Define the second transformation by (mi E A4 all i), 

m, @m2Q ... Qm,b+ C$l (m,,j h m2,j A ... A m,,j), where, for all (i, j), 
j=l 
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m, j = mlci, jj with I(i, j) = CE’:{)- ’ Pk +j- (v,(~, jj - pnci, j,), where n(i, j) = 
cj - uj + i. This latter transformation can be described in a similar way as 
the corresponding one in the definition of d,,x. 

Let us denote the composition of the above transformations by dt,n then 
by Theorem 2.2(c) there is a commutative diagram for each r E N,: 

DP’(A’) @ IvyA’) @ . . . @ DP”I(‘4’) A /i”‘(A’) @ /ia2(A’) @ . . . @ /iyA’) 

i 

” ” 

<[sI~,;i]lsET”~(~r)).4 -=-f% 
I 

(cslm(x T)EBT(Gr,a)),4. 

Here the vertical maps have a similar definition as the corresponding ones 
for d,,x(A’). 

By Theorem 2.2(e), Im C,C?‘,,J= ((Sl TV,,)= ((S] T,,,)]SE P\’ 
( <r), S” is standard). is universally free. Slightly generalising [ 11: 

DEFINITION. Let v and ,J be Young diagrams with v ~1 then 
IV”“\’ := Im(di,, : A-mod + A-mod), and WA’” shall be called the (skew) 
Weylfunctor for the (skew) Young diagram v\n over A. Observe that the 
image of WA’” is indeed in A-mod because WA’” is a functor and W”,\“(M) 
free of finite rank when M is. Also B@ w”>\” z wY,\‘(B@ -) for any 
commutative unitary A-algebra B. (We shall drop the suffix “A” in u”,‘” 
when there is no danger of confusion.) Clearly, W’(Am) = 0 when 1, > m. 

EXAMPLES. I#“) g D” and w”“) = /i” (the “extreme” cases). 

Remarks. (1) II”“” is the module K,,,(A’) in [l], and it 
corresponds to coschur,(v\~) in [3], and, for I= (0), to P in [6], 
(because of Theorem 1.1(f) and Theorem 2.2(e)), and to w:(A) in [7]. 
Also W=V, in the notation of [20]. Now IV”“(A’) is the skew Weyl 
module for v\n in the representation theory of Gl(r, A) (where A’ is the 
natural representation space of Gl(r, A)), which explains our notation and 
namegiving. 

(2) By Theorem 2.2, parts (e) and (f)(l), 

W”\“(A’)E ([(T,,,)“IT]ITES~‘~(~~))~ as A[End,(A’)]-modules. 

It is easily seen that d$(M) is the composition 

& Oh(M) r @ (Sh(M*)*) 
j=l i 

%( y sqM*))*m (+1 A”‘(M*))* 

2 @ (AyM*)*) r @I Aor+14), 

where (-)* denotes the functor Hom,(-, A), 
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the first two isomorphisms are the obvious ones and the last two are the 
inverses of the obvious ones. All maps are natural so they define natural 
transformations, and hence S”“( (-)*)* g u”,\” as endofunctors on A-mod. 

DEFINITION. Let F: A-mod -+ A-mod be a functor then the contravariant 
dual of F is the endofunctor on A-mod defined by MH F(M*)*. The 
contravariant dual off is denoted by PO. Especially (S>‘“)’ z uI”,\” for all 
Young diagrams v and ,4 with v 2 1. Now S”\“((A’)*)*, seen as representa- 
tion of Gl(r, A), is usually denoted by S”\“(A’)’ and is called the 
contravariant dual of S”\‘(A’), see, for example, [13], which explains our 
notations and namegiving. The duality between Schur and Weyl functors 
goes back to [20]. 

Consider the diagram for dg,,(A’) for r = n - a. 
Clearly ([Sl T] I (S, T) 6 BT(l”-“, a)), = A[$-,] 0 ars,,SpnA as 

A [S,-,I-module, via the vertical map on the right in fact using the 
convention abput the inclusion A[S,_,] 0 ACS,lsg”A in @Qi,“‘(,“-“). 

Also ([SI~,,,]ISET”\“(~~~‘))~~:[CS,_.]O~~~~,,”~A as A[S,-,I- 
module. 

CONVENTION (Notation as Above). We shall identify A [&,_.,I @ 
ACSB,lnVA with the subspace of @I @(A”-“) corresponding to ([St T,,,] ( 
SE ry’“(l”-“))A, via the vertical map on the left in the diagram for 
d$,x(A,-O). 

So there is a commutative diagram 

” 
I 

” 
I 

([Sl ?“,,I /SE Ty’“(l”-“)> cp(Fv\;) A’ (tSlnl(S, T)Ewl”-“,a)).. 

By Theorem 2.2(e), Im C,( F,;,) = ( [S 1 T,,,] I SE 7”‘\‘( l”-“), S” is 
standard). which is universally free. 

DEFINITION. 9’“\‘(A) := Im(e,*\l), and Y”“(A) is called the (skew) dual 
Specht module of S,-, for the (skew) diagram v\n over A. When A= (0) 
it corresponds to 9”(A) in [7], because of Theorem 2.2(e) and 
theorem 1.1(f). The isomorphism ,!?““((A”-“)*)* z wA’“(A”-“) yields an 
isomorphism yVpy\JA)* =9’“\“(A), where S,-, acts on Y,,,(A)* in the 
usual way: cr.f(x)=f(a-‘x) for fEHomA(9V,l(A),A), GE&_,, and 
x~~,A4. 

The kernel of d$,, compare Proposition 1.2, is described in: 
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PROPOSITION 2.3 (Compare [20]). Let v and 1 be Young diagrams with 
v2 1. Put u= (A,, I,, . . . . Ax,, O91-x1) and fi= v\n as partitions. Then 
ker dt,x(M) is generated by all the elements: 

1 (x1 Q x2 Q . . . Qxi_, Q (a,(*]) . a2(M2) . . . . . a,(Q) . ~~(‘1) . c2(‘2) . . . . . ~~(‘3)) 
(Lh) 

@ (Cl(hl) . C2(h2) . . . . . C,(hs) . bl(gl) . b2(g2) . . . . . @‘d)) Q xi+ 2 Q . . . Q x,, >, 

where i, j, k, d, e, andf are as in the Theorem 2.2(e)), x, E Ds(M) all r. And 
SE {1,2, . . . . f-k}, tE {1,2, . . . . r}, (E~,Q ,..., E,) t=f such that xi;: Ed< 
j-l andCf=,vi>j+k. 

And a,, a2, . . . . a,, cl, c2, . . . . c,, bl, b,, . . . . b,eM, (ml, m2, . . . . m,) k e, 
(81 > g2, *.*5 gd) b d and the summation is over {(l,h)E(NixNs))flZt= 
pi - e, h k bi+ I - d, li + hi = si all i}. 

(This can be proved in a similar way as Proposition 1.2 using 
Theorem 2.2(e).) 1 

11.2. The Filtrations 

Here is the result from [l] in which implicitly the straightening on the 
exterior letter place algebras was involved. It also shows how Weyl 
functors turn up in studying exterior powers. 

PROPOSITION 2.4 (Slight Refinement of [ 11). The functor An(- 0 -): 
A-mod x A-mod + A-mod admits an explicit filtration by subfunctors 

/jn(-@-)=LlCl3L~23 . . . 3Lp'+'=o 

with ZEN, p’<p*< ..’ < p’ are all Young diagrams for n and for all i E_I 
there is an equivalence 

WP’ Q s”’ q LP”IL”’ + ‘, 

Moreover when v + n, @ :I, A”{: A-mod + A-mod admits an explicit filtra- 
tion by subfunctors 

with mEI%, 1’<,J2< ... < 1” are all elements of (A I- n ) x < v } and for all 
iem there is an equivalence w”‘Q Fir PIti”‘, where Fi is the constant 
functor with value theb free A-module of rank #ST”(v). 

In case v=(l”) then S, acts on QiAv’=(l)@” as follows: for YES,,, a 
acts via sgn(a) . G,, where G, is the usual permutation action on the n th ten- 
sor power given by a. In this case the K” can be chosen to be S,-invariant 
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and such that the action on K”“/K”” corresponds to an action on Fi turning 
the value into 9”‘(A). 

ProoJ: The proof below is quite similar to the proof of Proposition 1.3. 
Let ,u~-n and ‘pp: Oji’,D’l(M)QO~i,A”‘(N)~A”(MON) be the 
natural A- homomorphism defined by 

@ (WZi,J(““’ . mi,2 
(h.2) . . . .m, p,h))Q @ (ni , A niT2 h . . . A nip,) 

i i 

where li := (I,,, li,2, . . . . Zi,,,) k pLi all i and the summation is over all 
(TE ni Ri with R, a transversal for S,,/S,, for all i. Here Aixi, for 
x~EA”‘(M@N) all i, means the image ofx,@x,@ ... @Oxfi, in An(M@N) 
via the product map for the exterior power algebra of MON. 

When M and N are free A-modules of rank r respectively s, then 
([(T,)“I T] 1 TE Tfi ( <s))~ N aiAN via the isomorphism defined by 
C(T,J”I Tl + @i(e,, A eT,,z A ... A eT ), where (ei , e2, . . . . e,) is the 
natural basis of N = A’. Hence, (pF corr%ponds to the A-linear map (see 
above the definition of I+‘“\‘): ([Slf’,,lISET“(<r))A@([T~)t’~T]I 
T E ,T” ( <s))~ + ([Sl T] I(S, T) E UFCn BTp (<r, Qs)), defined by 
[Sl TplO CVJI Tl H CSI Tl. 

Moreover by specialising Theorem 2.2(a) we find that the quotient 
homomorphism ‘pp: oi D”‘(M) @ oi Aa --f An(M 0 N) factorizes 
through a natural A-homomorphism, 

cp: Wp(M)QSfi(N)+A”(MQN) 1 Imcp,. 
‘>P 

When M and N are free A-modules of rank r respectively s then c, 
corresponds by Theorems 2.2(b) to the A-linear map, 

(CS”IT,IISEST~(~~))~O([(T~)“IT]ITEST~(~S))~ 

-([S”IT]I(S, 7’)~ u (ST~(<~)XST~(<S)))~, 
/I+n 

defined by [S” I TJ 0 [ ( Tfi)” I T] H [S” 1 T]. 

By Theorem 2.2(d) this map is an isomorphism onto its image. 
Observe that ‘pC1”) is surjective hence C, Im (Pi = An(Zt4@ N). 
Observe that (Pi generalises to a natural transformation @,, : @i Dpi(-) 0 

@Ji A pi(-) + A”(- 0 -). Hence c, generalises to a natural transformation 
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c,: WOOS”+ /P-@-)/c,,, Im @,, which is an equivalence onto its 
image. 

Hence, put L” = Crap Im Gr then the L’ make up the desired 
filtration. Concerning @ i A “1, observe that there is an equivalence 
o(ix,.or2 ,..., orn) + n 01=1 A al r A”(-@ A”), defined on the summand for CI k n 
by 

0 (mi.1 A mi.2 A ... A m,,,,) 

HA ((mi.I@ej) A (mi,z@ei) A ... A (mi,m,@ei)), 

where m,j E M all i, j and (e,, e2, . . . . e,) is the natural basis of A”. Now 
the filtration for ai A”, is the summand of the one for A”(-@A”) 
corresponding to a = v. The dimension of the value of Fi follows from 
Theorem 2.2(d). The filtration for ai A”l with v = (1”) has the desired 
properties. 1 

Remark. As a direct summand of the filtration for @ i A’(A”) there is 
a filtration for A [S,] 0 ACS,,S8”A, corresponding to letter content (1”). 
Compare [8]. 

Skew Weyl functors arise as follows: 

THEOREM 2.5. Let v + n and L E A-mod. 

(a) There are explicit subfunctors Fk, for kE (0, 1, . . . . n}, of 
IV”- @ -): A-mod x A-mod + A-mod such that W(- 0 -) = 0;: = D Fk. And 
such that, for each k, Fk admits an explicit filtration by subfunctors 

Fk = Ka’ 3 Ka’ 3 . . . 2 Kaflk)+ ’ = 0 

with l(k)E N, ,I’ <J2< ... < 2/(k) are all elements of { 1 c k 1 v 3 A} and for 
all i E l(k) there is an equivalence - 

WA’@ Wy\i’m&+,K~‘+‘. 

(b) Suppose there is an exact sequence 0 + N + A4 + L + 0 in A-mod 
then W”(M) admits an explicit natural filtration: 

W”(M)+,&Nf12~ . . . ~N~‘+‘=O with HEN, p1<p2< ... <p’ 

are all elements of I= IJzSO {p I- k 1 v 2 p} and for all i ~1 there is a natural 
isomorphism W@(N) @ W\“‘(L) % N@yNP”‘. By “natural” we mean the 
same as in Theorem 1.4(b). 
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Proof: A proof similar to that of Theorem 1.4 can be given, therefore 
we only give the framework. 

(a) Let kE (0, 1, . . . . n} and put P(k)= {ccE(RJo)J1(C~;l a,=k, ai<Vi 
all i}. Let a E P(k) then one defines a natural A-linear map 

b,: if, D”‘(N)@ & @(L) -+ & Dvi(N@ L),, where 
i=l ;= 1 

/Ii= vi--aiall i, 

@ ( fi n,,i(*J 
i j=l 

) @ @ ( fi li,hcgl,h)) t--b @ (n ni,i(m’J) . n li,hcgl,hi), 
i h=l 1 i h 

where n, j E N and I, j E L all i, j, h, 

and (mi,l, mi.2, ..-, mf.,) k ai 

and (li.1, li.2, -., li,ps) k piall i. 

Put db,=d;(N@L)ob,: @JF(N)@&DBd(L)+ FV”(N@L). 
Put & = Cm e i-(k) Im b,, then Kk is a natural submodule of W(N@ L) 

and CizO E(k = W”(N@ L). 
Let kE (0, 1, . . . . n} and let J I-k be such that v 2 3, then dbA shall mean 

db, with a = (A,, A,, . . . . AxI, OD1-‘l). 
Then the following claims can be proved, by Theorem 2.2 and Proposi- 

tion 2.3, in a similar way as the corresponding claims in the proof of 
Theorem 1.4: 

Claim 1. For c1 E P(k), Im db, c C, tk, r z 1 Im db,, especially Kk = 
c Itk Im dbl. Moreover CECO Kk= @zEo Kk. 

Claim 2. Let 3, + k be such that v ZJ 1, and put /I = v\J.. 
Then dbdx) E C, ti T, i Im db, for all x E [Ker d!(N) @ @ :I, DB8(L)) u 

( 0 fk 1 D”‘(N)@ Ker &x(L))]. 

By these two claims the quotient map a;,: 0, D”‘(N) @ oi DBz(L) --+ 
KkE ~ ck, T, j. Im db, factories through a natural map cl: WA(N) @ 
~“(L)~KkICr,k.r>j,Imdb,. 

Claim 3. For all 1 I- k with v 2 1, Cj. is an isomorphism onto its image. 

Now the maps db, generalise to natural transformations 
DB, : oi Da’(-) @ mi @‘I(-) -+ IV”-@ -). And each Kk generalises to a 
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functor Fk, with @ ;+ Fk = IV”-@-). And ci. generalises a natural trans- 
formation 

C,: W’Q Wy\‘+Fk 1 Im DB, 
r+k.r>A 

which is an equivalence onto its image. Hence, the desired filtration follows. 
(b) Similar to the proof of Theorem 1.4(b). 1 

Remarks. (1) A slightly weaker version of (a) was claimed in [ 11. 
(2) Theorem 2.5 generalises the well-known results for exterior and 

divided powers (the cases v = (1”) respectively v = (n)). Similar observa- 
tions as in Remark (2) below Theorem 1.4 can be made concerning Weyl 
functors. 

THEOREM 2.6. LetaEfV(,A+a,vI-n,supposevgA.andput/?=F\Xas 
partition. Then WV\” admits an explicit filtration by subfunctors 

W”\” = NT’ 3 NT= 3 . . . 3 NT’+’ = 0 

with IE N, T’ c,. T’-c,... cc T’ are all elements of L= {TEST~(/?)I~L 
(n - a), ~p$‘,~(fi)} and for all! there is an equivalence Wp’% NT’/NT1+‘, where 
pi is the shape of P’. Here &,I is defined as in Theorem 1.5. 

ProojI A proof similar to the one of Theorem 1.5 can be given. There- 
fore we shall only give a framework. 

Let TEL and let p be its shape. Define the set P and the tableau Tp as 
in the proof of Theorem 1.5 with the only difference that v” and 2 are 
replaced by v respectively 1. Define a natural A-homomorphism 
b,: @fL, D”C(M)+A’-0(A4@A”) by 

X H c sgn(p) “pp x@ @ (e(TP),,l * e(TPX,2 * .‘. h e(T”)d.,,) ’ 
PEP I > 

where (e,, e2, . . . . e,) is the natural basis of A” and (pfl is the map in the 
proof of Proposition 2.4. 

There is a natural injective A-homomorphism @Jl, Aal + 
/jnma(M@An) defined by oi(mj,, A mj.2 A ... A mj,p,)H&((mj,,Oei) 
A (mi,z@ei) A ... A (mj,h@ej)), where mj,k E M all j, k. The image 

contains Im(b,) since the content of T is p. 
When M is free of rank r then “b,“: oi D”‘(M) + oj Ah(M) 

corresponds to the A-linear map, 

~C~l~~ll~~~~~~~~~~~~C~I~lI~~~ VEBT(Gr,B))A defined by 

Cul f’J I+ c wG)CV Tpl. 
DEP 
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Claim. (a) For all UeTP(<r), &.psgn(p)[UITPl is an element of 
([St’)T,,,]ISEST1\‘(~r))A. 

(b) If U E STP (<r) then &,cp sgn(p)[UI TpI = [VI Tl + 
C bV,,[ I’( IV] for certain bV,w E A, where the summation is over 
Z(U, T)={(V, W)EBT (<r,/?)IV” and W are standard, [W>,,T or 
(W= T and V>, U)]}. 

(c) Let 0 #XE ([,S”I Ty,n] 1 SE Sp\” ( <r))A and write X= 
u,~,-[U’I T’] +Ca,,,[VI W] for bur,.,EA\{O} and a,,eA all (V, IV, 
where (U’)” and T’ are standard and the summation is over Z( U’, T’), see 
(b), (This is possible because of Theorem 2.2(b) and the expression is 
unique by Theorem 2.2(d).) 

Then T’ EL. 
(This can be proved in a similar way as the Claim 1 in the proof of 

Theorem 1.5, by Theorem 2.2. See concerning turning over “shuffles” the 
proof of Theorem 2.2(a)( 1)). 

By this claim CTEL Im b, = IV”“(M) and, using Theorem 2.2 as well, 
the quotient map 6,: oi D’(M) + lV\‘(M)/Cy,c T Im b, factorises 
through a natural map cT: WN(M) -+ IV”\‘(M)/CV,c T Im b, which is an 
isomorphism onto its image. 

Now b, generalises to a natural transformation B,: mi D”’ -+ IV”“, 
hence cT generalises to a natural transformation C,: WP + 
W”‘“E “,, T Im B, which is an equivalence onto its image. The desired 
filtration follows. 1 

Remark. Remarks similar to those in Remark 2 below Theorem 1.5 can 
be made concerning Weyl functors and dual Specht modules. 

COROLLARY 2.6 (Generalisation of [4]). Let m E N, p + m, A+ n. 
Then W’. Q WP: A-mod + A-mod admits an explicit filtration by subfunctors 

w’.QwJ‘=LT’~)T~~ . . . 3~T’+‘=o 

with IEN, T’<,T2<,... cc T’ are all elements of { TE ST”(&\p)I v + 
(n+m), ~~;,,(T)ESP’\‘(V”)} undf or all i E! there is an equivalence 

w”’ 3 L T’JL T’ + ’ where vi is the shape of T’. 

(The proof is similar to that of Corollary 1.5). 1 

Remark. Remarks similar to those in Remark 2 below Corollary 1.5 
can be made. 

The contravariant dual of the symmetric power is the divided power. In 
Proposition 1.3 there is given a filtration for a smmetric power applied on 
a tensor product with tensor products of Schur functors as subquotients. 
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Hence, there must be a corresponding filtration for the the divided power 
applied to a tensor product with tensor products of Weyl functors (the con- 
travariant duals of Schur functors) as subquotients. In order to construct 
such a filtration one could hope for a divided letter place algebra which 
would take care of the combinatorics. In fact we will sketch the construc- 
tion of such a divided letter place algebra below. However, the Weyl 
modules cannot be expected to be submodules in the way Schur modules 
are embedded in the (ordinary) letter place algebra. This follows from the 
definition of Weyl functors: they are quotients of products of divided 
powers. Hence, Weyl modules ought to be subquotients of the divided 
power algebra. 

As algebra the divided letter place algebra for (m, n) (m, n E IV,,) is the 
divided power algebra of the free A-module with basis ((i 11 j) I i E m, j E n). 
The i on the left in (ill j) can be seen as a letter and the j on the right as 
a place. Clearly, the divided power algebra for (m, n) is isomorphic to 
D(A” @ A”) when we let (i 11 j) correspond to ei Of, as usual. Via this 
isomorphism the divided letter place algebra becomes an A[End,(A”) x 
End,(A”)]-algebra. 

In order to produce an A-basis suitable for filtrations we define a kind 
of bipermanent: 

Let n,m,kENO, CI k k and let (U, I/)eBTa (<m, <n). When a=(k) 
put (UIII/)=C,..{U,,,,U,~,,...~,,,,II~,~,..~~,}, where R is a 
transversal for H,\Sk/H, with H, the row stabiliser of U and H, that 
for V (see the definition of one-rowed bipermanents). And, for 
(w,X)EBT(k’(<m, al), 

{ W(I A-> = fj fi (illjpJ with m,,= # {lekl (W,, X,)= (i, j)} all i,j. 
i=l j=1 

In general, put ( U I/ V) = nf’=, ( Ui, 1 U,, . . . Ui,a, II Vi. 1 Vi,2 . . ’ Vi,,,), where 
b is the number of coordinates of a. 

The straightening is easily seen to be seen as in Theorem 2.2(a)(2) for 
letters and places. 

Hence, when 1+ n, a k n, fi + n and (U, V) E BT’(a, /?) then (U II V) E 
((Sll r)l(S, T)~llF(a, /3) for some pt-n with ~22, S<, U, Td, V, Str 
and T” are standard ) A. 

The independence of ((9’ 1) Tt’) ) (S, T) E U bin SBTp ( Q m, < n)) follows 
from Theorem 1.1(d), by a dimension argument. And hence, as usual, a 
filtration Dn(-@-)=LflI~LP2~ ... =LP’+‘=O with [EN, p1<p7< ... < 
,uI are all Young diagrams for n and for i E! an equivalence Wp’@ Wp’ 3 
L”‘/LP ‘. As a summand, for example, a filtration for QT: i D”‘. With 
respect to the bases of standard tableaux observe that the exterior letter 
place algebra is a mixture of the ordinary and the divided letter place 
algebra. 
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Finally, one can define ( q U V) and (U 11 q ) in a similar way as alter- 
nated bipermanents. The straightening on both sides, is as for alternated 
bipermanents, and the independence for standard tableaux is as for alter- 
nated bipermanents. 

REFERENCES 

1. K. AKIN, D. A. BLJCHSBAUM, AND J. WEYMAN, Schur functors and Schur complexes, Adu. 
in Math. 44 (1982). 207-278. 

2. K. AKIN AND D. A. BUCHSBALJM, Characteristic-free representation theory of general 
linear groups, Adu. in Math. 58 (1985), 149-200. 

3. M. BARNABEI AND A. BRINI, Symmetrised skew determinants, Comm. Algebra 15 (1987), 
1455-1468. 

4. M. BARNABEZI AND A. BRINI, The Littlewood-Richardson rule for Coschur modules, Adu. 
in Math. 67 (1988) 143-173. 

5. G. BOFFI, The universal form of the Littlewood-Richarson rule, Adu. in Math. 68 (1988), 
40-63. 

6. R. W. CARTER AND J. LUSZTIG, On the modular representations of the genera1 linear and 
symmetric groups, Math. Z. 136 (1974), 193-242. 

7. M. CLAUSEN, Letter place algebras and a characteristic free approach to the representa- 
tion theory of general linear and symmetric groups, I, Adu. in Math. 33 (1979), 161-191. 

8. M. CLAUSEN, Letter place algebras and a characteristic free approach to the representa- 
tion theory of general linear and symmetric groups, II, Adu. in Math. 38 (1980), 152-178. 

9. S. DONKIN, Rational representations of algebraic groups: Tensor products and fltrations, 
in “Lecture Notes in Math.,” Vol. 1140, Springer-Verlag, New York, 1985. 

10. S. DONKIN, Skew modules for reductive groups, J. Algebra 113 (1988), 465479. 
11. P. DOUBILET AND G.-C. ROTA, Skew-symmetric invariant theory, Adu. in Math. 21 (1976), 

196-201. 
12. P. DOUBILET, G.-C. ROTA, AND J. STEIN, Foundations of combinatorics, IX, Stud. Appl. 

Math. 53 (1974), 80-104. 
13. J. A. GREEN, Polynomial representations of Gl,, in “Lecture Notes in Math.,” Vol. 830, 

Springer-Verlag, New York, 1980. 
14. G. D. JAMES AND M. H. PEEL, Specht series for skew representations of symmetric groups, 

J. Algebra 56 (1979), 343-364. 
15. F. M. KOUWENHOVEN, “Universal Operations in the Representation Theory of Groups,” 

Ph.D. thesis, Utrecht, 1986. 
16. F. M. KOUWENHOVEN, Modules de Specht generalists et le probltme du pltthysme, C.R. 

Acad. Sri. Paris 302 (1986), 653656. 
17. F. M. KOUWENHOVEN, Schur and Weyl functors, IV, preprint. 
18. I. G. MACDONALD, Polynomials functors and wreath products, J. Pure Appl. Algebra 18 

(1980), 173-204. 
19. D. G. MEAD, Determinantal ideals, identities and the Wronskian, Pacific J. Math. 42 

(1972), 165-175. 
20. J. TOWBER, Two new functors from modules to algebras, J. Algebra 48 (1977), 8&104. 
A,. F. D. GROSSHANS, G.-C. ROTA, AND J. A. STEIN, Invariant theory and superalgebras, in 

“Regional. Conf. Series in Math.,” Vol. 69, Amer. Math. Sot., Providence, RI, 1987. 
A,. G.-C. ROTA AND J. A. STEIN, Symbolic method in invariant theory, Proc. NatI. Acad. Sci. 

U.S.A. 83 (1986), 844-847. 
A,. G.-C. ROTA AND J. A. STEIN, Standard bases in supersimplectic algebras, Proc. Narl. 

Acad. Sci. U.S.A. 86 (1989), 2521-2524. 


