2,242 research outputs found

    Sb2Te3 and Bi2Te3 based thermopower wave sources

    Get PDF
    Exothermic chemical reactions from nitrocellulose are coupled onto Sb2Te3 (antimony telluride) and Bi2Te3 (bismuth telluride) layers to generate self-propagating oscillating thermopower waves. P-type Sb2Te3 and N-type Bi2Te3 are employed due to their large Seebeck coefficients, high electrical conductivities and their complementary semiconducting properties. Sources based on both materials exhibit high power to mass ratios: up to 0.6 kW kg-1 for Sb2Te3 and 1.0 kW kg-1 for Bi2Te3. Having both P- and N-type semiconductors in the system, the combination of the outputs can be used for generating sources with polarities alternating in time

    Harmonization of Protocols for Assessing the Bioefficacy and Bioafety of Genetic Engineering and Conventional Technologies for Pest Management

    Get PDF
    Several technologies are in use for the management o f insect pests, wherein, different protocols and guidelines are being followed for testing their bioefficacy and biosafety. Therefore, it is important to have a comparative assessment o f bioefficacy and biosafety o f different pest management technologies viz. synthetic pesticides, biopesticides, natural plant products, natural enemies, and genetically modified organisms (GMOs) to the nontarget organisms in the environment. Toxicology and biosafety data should be generated on prescribed animals as per the national and international protocols recommended by the government agencies, FAO, WHO, OECD, and EPA. Natural plant products, natural enemies, and insect-resistant crops developed through conventional and genetic engineering approaches should be viewed differently and safety requirements simplified and relaxed as appropriate, as compared to the synthetic insecticides. Generation o f data on bioefficacy should not only be done in micro-plots at the research stations, but also on the farmers’ fields across a range o f environments. Eco-safety data requirements and test protocols need a holistic review to ensure that priority risks are addressed and tests are focused on realistic exposure regimes

    Exfoliation solvent dependent plasmon resonances in two-dimensional sub-stoichiometric molybdenum oxide nanoflakes

    Get PDF
    Few-layer two-dimensional (2D) molybdenum oxide nanoflakes are exfoliated using a grinding assisted liquid phase sonication exfoliation method. The sonication process is carried out in five different mixtures of water with both aprotic and protic solvents. We found that surface energy and solubility of mixtures play important roles in changing the thickness, lateral dimension, and synthetic yield of the nanoflakes. We demonstrate an increase in proton intercalation in 2D nanoflakes upon simulated solar light exposure. This results in substoichiometric flakes and a subsequent enhancement in free electron concentrations, producing plasmon resonances. Two plasmon resonance peaks associated with the thickness and the lateral dimension axes are observable in the samples, in which the plasmonic peak positions could be tuned by the choice of the solvent in exfoliating 2D molybdenum oxide. The extinction coefficients of the plasmonic absorption bands of 2D molybdenum oxide nanoflakes in all samples are found to be high (Îμ > 109 L mol-1 cm-1). It is expected that the tunable plasmon resonances of 2D molybdenum oxide nanoflakes presented in this work can be used in future electronic, optical, and sensing devices

    ZnO based thermopower wave sources

    Get PDF
    Exothermic chemical reactions of nitrocellulose are coupled onto thermoelectric zinc oxide (ZnO) layers to generate self-propagating thermopower waves resulting in highly oscillatory voltage output of the order of 500 mV. The peak specific power obtained from ZnO based sources is approximately 0.5 kW kg-1

    Transition metal oxides - Thermoelectric properties

    Get PDF
    Transition metal oxides (TMOs) are a fascinating class of materials due to their wide ranging electronic, chemical and mechanical properties. Additionally, they are gaining increasing attention for their thermoelectric (TE) properties due to their high temperature stability, tunable electronic and phonon transport properties and well established synthesis techniques. In this article, we review TE TMOs at cryogenic, ambient and high temperatures. An overview of strategies used for morphological, compositing and stoichiometric tuning of their key TE parameters is presented. This article also provides an outlook on the current and future prospects of implementing TMOs for a wide range of TE applications

    Transparent functional oxide stretchable electronics: micro-tectonics enabled high strain electrodes

    Get PDF
    Fully transparent and flexible electronic substrates that incorporate functional materials are the precursors to realising nextgeneration devices with sensing, self-powering and portable functionalities. Here, we demonstrate a universal process for transferring planar, transparent functional oxide thin films on to elastomeric polydimethylsiloxane (PDMS) substrates. This process overcomes the challenge of incorporating high-temperature-processed crystalline oxide materials with low-temperature organic substrates. The functionality of the process is demonstrated using indium tin oxide (ITO) thin films to realise fully transparent and flexible resistors. The ITO thin films on PDMS are shown to withstand uniaxial strains of 15%, enabled by microstructure tectonics. Furthermore, zinc oxide was transferred to display the versatility of this transfer process. Such a ubiquitous process for the transfer of functional thin films to elastomeric substrates will pave the way for touch sensing and energy harvesting for displays and electronics with flexible and transparent characteristics

    Association of Long-Term Exposure to Fine Particulate Matter and Cardio-Metabolic Diseases in Low- and Middle-Income Countries: A Systematic Review.

    Get PDF
    : Background: Numerous epidemiological studies indicated high levels of particulate matter less than2.5 μm diameter (PM2.5) as a major cardiovascular risk factor. Most of the studies have been conducted in high-income countries (HICs), where average levels of PM2.5 are far less compared to low- and middle- income countries (LMICs), and their socio-economic profile, disease burden, and PM speciation/composition are very different. We systematically reviewed the association of long-term exposure to PM2.5 and cardio-metabolic diseases (CMDs) in LMICs. METHODS: Multiple databases were searched for English articles with date limits until March 2018. We included studies investigating the association of long-term exposure to PM2.5 (defined as an annual average/average measure for 3 more days of PM2.5 exposure) and CMDs, such as hospital admissions, prevalence, and deaths due to CMDs, conducted in LMICs as defined by World Bank. We excluded studies which employed exposure proxy measures, studies among specific occupational groups, and specific episodes of air pollution. RESULTS: A total of 5567 unique articles were identified, of which only 17 articles were included for final review, and these studies were from Brazil, Bulgaria, China, India, and Mexico. Outcome assessed were hypertension, type 2 diabetes mellitus and insulin resistance, and cardiovascular disease (CVD)-related emergency room visits/admissions, death, and mortality. Largely a positive association between exposure to PM2.5 and CMDs was found, and CVD mortality with effect estimates ranging from 0.24% to 6.11% increased per 10 μg/m3 in PM2.5. CVD-related hospitalizations and emergency room visits increased by 0.3% to 19.6%. Risk factors like hypertension had an odds ratio of 1.14, and type 2 diabetes mellitus had an odds ratio ranging from 1.14-1.32. Diversity of exposure assessment and health outcomes limited the ability to perform a meta-analysis. CONCLUSION: Limited evidence on the association of long-term exposure to PM2.5 and CMDs in the LMICs context warrants cohort studies to establish the association

    Characterization of metal contacts for two-dimensional MoS2 nanoflakes

    Get PDF
    While layered materials are increasingly investigated for their potential in nanoelectronics, their functionality and efficiency depend on charge injection into the materials via metallic contacts.This work explores the characteristics of different metals (aluminium, tungsten, gold, and platinum) deposited on to nanostructured thin films made of two-dimensional (2D) MoS2 flakes. Metals are chosen based on their work functions relative to the electron affinity of MoS2. It is observed, and analytically verified that lower work functions of the contact metals lead to smaller Schottky barrier heights and consequently higher charge carrier injection through the contact

    BET inhibitors induce apoptosis through a MYC independent mechanism and synergise with CDK inhibitors to kill osteosarcoma cells

    Get PDF
    Osteosarcoma (OS) survival rates have plateaued in part due to a lack of new therapeutic options. Here we demonstrate that bromodomain inhibitors (BETi), JQ1, I-BET151, I-BET762, exert potent anti-tumour activity against primary and established OS cell lines, mediated by inhibition of BRD4. Strikingly, unlike previous observations in long-term established human OS cell lines, the antiproliferative activity of JQ1 in primary OS cells was driven by the induction of apoptosis, not cell cycle arrest. In further contrast, JQ1 activity in OS was mediated independently of MYC downregulation. We identified that JQ1 suppresses the transcription factor FOSL1 by displacement of BRD4 from its locus. Loss of FOSL1 phenocopied the antiproliferative effects of JQ1, identifying FOSL1 suppression as a potential novel therapeutic approach for OS. As a monotherapy JQ1 demonstrated significant anti-tumour activity in vivo in an OS graft model. Further, combinatorial treatment approaches showed that JQ1 increased the sensitivity of OS cells to doxorubicin and induced potent synergistic activity when rationally combined with CDK inhibitors. The greater level of activity achieved with the combination of BETi with CDK inhibitors demonstrates the efficacy of this combination therapy. Taken together, our studies show that BET inhibitors are a promising new therapeutic for OS

    Leveraging Existing Cohorts to Study Health Effects of Air Pollution on Cardiometabolic Disorders:India Global Environmental and Occupational Health Hub

    Get PDF
    Air pollution is a growing public health concern in developing countries and poses a huge epidemiological burden. Despite the growing awareness of ill effects of air pollution, the evidence linking air pollution and health effects is sparse. This requires environmental exposure scientist and public health researchers to work more cohesively to generate evidence on health impacts of air pollution in developing countries for policy advocacy. In the Global Environmental and Occupational Health (GEOHealth) Program, we aim to build exposure assessment model to estimate ambient air pollution exposure at a very fine resolution which can be linked with health outcomes leveraging well-phenotyped cohorts which have information on geolocation of households of study participants. We aim to address how air pollution interacts with meteorological and weather parameters and other aspects of the urban environment, occupational classification, and socioeconomic status, to affect cardiometabolic risk factors and disease outcomes. This will help us generate evidence for cardiovascular health impacts of ambient air pollution in India needed for necessary policy advocacy. The other exploratory aims are to explore mediatory role of the epigenetic mechanisms (DNA methylation) and vitamin D exposure in determining the association between air pollution exposure and cardiovascular health outcomes. Other components of the GEOHealth program include building capacity and strengthening the skills of public health researchers in India through variety of training programs and international collaborations. This will help generate research capacity to address environmental and occupational health research questions in India. The expertise that we bring together in GEOHealth hub are public health, clinical epidemiology, environmental exposure science, statistical modeling, and policy advocacy
    • …
    corecore