3,623 research outputs found

    A Fermion-like description of condensed Bosons in a trap

    Get PDF
    A Bose-Einstein condensate of atoms, trapped in an axially symmetric harmonic potential, is considered. By averaging the spatial density along the symmetry direction over a length that preserves the aspect ratio, the system may be mapped on to a zero temperature noninteracting Fermi-like gas. The ``mock fermions'' have a state occupancy factor (>>1)(>>1) proportional to the ratio of the coherance length to the ``hard-core'' radius of the atom. The mapping reproduces the ground state properties of the condensate, and is used to estimate the vortex excitation energy analytically. The ``mock-fermion'' description predicts some novel collective excitation in the condensed phase.Comment: 11 pages, REVTE

    Ground state fluctuations in finite Fermi and Bose systems

    Full text link
    We consider a small and fixed number of fermions (bosons) in a trap. The ground state of the system is defined at T=0. For a given excitation energy, there are several ways of exciting the particles from this ground state. We formulate a method for calculating the number fluctuation in the ground state using microcanonical counting, and implement it for small systems of noninteracting fermions as well as bosons in harmonic confinement. This exact calculation for fluctuation, when compared with canonical ensemble averaging, gives considerably different results, specially for fermions. This difference is expected to persist at low excitation even when the fermion number in the trap is large.Comment: 20 pages (including 1 appendix), 3 postscript figures. An error was found in one section of the paper. The corrected version is updated on Sep/05/200

    Haldane Exclusion Statistics and the Boltzmann Equation

    Get PDF
    We generalize the collision term in the one-dimensional Boltzmann-Nordheim transport equation for quasiparticles that obey the Haldane exclusion statistics. For the equilibrium situation, this leads to the ``golden rule'' factor for quantum transitions. As an application of this, we calculate the density response function of a one-dimensional electron gas in a periodic potential, assuming that the particle-hole excitations are quasiparticles obeying the new statistics. We also calculate the relaxation time of a nuclear spin in a metal using the modified golden rule.Comment: version accepted for publication in J. of Stat. Phy

    Fermions at unitarity and Haldane Exclusion Statistics

    Full text link
    We consider a gas of neutral fermionic atoms at ultra-low temperatures, with the attractive interaction tuned to Feshbach resonance. We calculate, the variation of the chemical potential and the energy per particle as a function of temperature by assuming the system to be an ideal gas obeying the Haldane-Wu fractional exclusion statistics. Our results for the untrapped gas compare favourably with the recently published Monte Carlo calculations of two groups. For a harmonically trapped gas, the results agree with experiment, and also with other published work.Comment: 4 pages, 1 postscript figur

    The thermodynamic limit for fractional exclusion statistics

    Full text link
    I discuss Haldane's concept of generalised exclusion statistics (Phys. Rev. Lett. {\bf 67}, 937, 1991) and I show that it leads to inconsistencies in the calculation of the particle distribution that maximizes the partition function. These inconsistencies appear when mutual exclusion statistics is manifested between different subspecies of particles in the system. In order to eliminate these inconsistencies, I introduce new mutual exclusion statistics parameters, which are proportional to the dimension of the Hilbert sub-space on which they act. These new definitions lead to properly defined particle distributions and thermodynamic properties. In another paper (arXiv:0710.0728) I show that fractional exclusion statistics manifested in general systems with interaction have these, physically consistent, statistics parameters.Comment: 8 page
    corecore