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A Fermion-like description of condensed Bosons in a trap
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Abstract

A Bose-Einstein condensate of atoms, trapped in an axially symmetric har-

monic potential, is considered. By averaging the spatial density along the

symmetry direction over a length that preserves the aspect ratio, the system

may be mapped on to a zero temperature noninteracting Fermi-like gas. The

“mock fermions” have a state occupancy factor (>> 1) proportional to the

ratio of the coherance length to the “hard-core” radius of the atom. The map-

ping reproduces the ground state properties of the condensate, and is used

to estimate the vortex excitation energy analytically. The “mock-fermion”

description predicts some novel collective excitation in the condensed phase.
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Recently there has been a renewed interest in the Bose-Einstein condensation(BEC) of a

gas after its experimental demonstration [1] with rubidium vapour in a trap at a temperature

of 170 nanokelvin and at a number density ρ = 2.5 × 1012 atoms per cc. This experiment

has been followed by others using alkali atoms [2]. At these temperatures the atoms form a

weakly interacting metastable gas of Bosons. For a non-technical account see the review by

Burnett [3]. In a typical device, atoms are trapped in a potential which is well described by an

axially symmetric parabolic confinement. The oscillator frequency in the symmetry direction

is larger than the frequency in the plane perpendicular to it. The experimental situation of

interest to us is the one with rubidium vapour, where the s-wave scattering length between

two atoms is known to be positive. The effect of the interatomic interaction may be mocked

up by a repulsive pseudo-potential [4]. The interaction energy is propotional to aρ2, where

a is the s-wave scattering length and ρ is the number density of the atoms. The properties

of the condensate have been studied by constructing the density functional involving this

replusive interaction energy, and the potential energy of the atoms in the trap [5–7]. In this

paper, we first note that by averaging the spatial density of the condensed bosons along

one direction, it may be reduced to the same form as the density of a non-interacting Fermi

gas. We chose the averaging direction to be the symmetry axis (the z-direction ), along

which the harmonic confinement is steeper. This enables us to use the Fermi gas model to

compute the low-lying planar excitations of the condensate in the shallow well. Moreover,

the averaging distance is chosen to preserve the aspect ratio (the ratio of the length scales

in the planar to perpendicular directions ) of the original trap. The Bose-condensate is now

described by a three-dimensional noninteracting “Fermi” gas, trapped in the same planar

parabolic potential as the original system, but free to move along the z-direction within

the averaging distance. One peculiarity of these mock-fermions, as we call them, is their

occupancy factor per state. Instead of being one (or zero ) at T = 0, it is multiplied by a

large factor proportional to λF/2a, where λF = h/pF , and 2a the apparent size of the atom.

In fact, the Fermi momentum h̄kF is such that k−1

F = ξ, where ξ = (8πρa)−1/2 is just the

coherance length in the bose condensate. It is remarkable that the kinetic energy of these
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mock fermions exactly reproduces the condensate energy in the large-N limit. The latter

is in fact calculated by neglecting the kinetic energy of the bosons. After having shown

this equivalence, we go on to use this model to calculate some other properties. These

include the velocity of sound, and the vortex excitation energy. The sound velocity in the

mock-fermion ideal gas is the same as in the Bose-condensate. A simple estimate of the

vortex excitation energy is made by “digging” a hole in the central density, i.e., promoting

all the s-state mock-fermions out of the Fermi sea to states of non-zero angular momentum.

This reproduces the numerical results of Dalfovo and Stringari [6] satisfactorily. The latter

calculation involved solving a nonlinear Schrödinger equation that was obtained from the

density-functional formalism. Finally, our description also predicts some novel collective

excited states with zero angular momentum involving a large number of mock-fermions.

We begin with the ground state energy for condensed bosons given by the Ginzberg-

Gross-Pitaevskii [8] energy functional,

E[ψ] =
∫

d3r

[

h̄2

2m
|∇ψ|2 +

m

2
(ω2

⊥
r2

⊥
+ ω2

3
z2)|ψ(r)|2 +

2πh̄2a

m
|ψ(r)|4

]

, (1)

where m is the mass of the atom, ω⊥, ω3 denote the oscillator frequencies in the transverse

direction and in the direction of the symmetry axis( z-axis), and a is the s-wave scattering

length which defines the strength of the interaction in the pseudo-potential method. The

condensate wave function is usually denoted as

ψ(r) =
√

ρ(r) exp is(r). (2)

We work in the limit of strong repulsive interaction where the kinetic energy term can be

neglected in the condensate phase. In the large N-limit we can then obtain the density ρ(r)

by minimising (E − µN), where µ is the chemical potential. This is the Thomas-Fermi

expression for the density within the classical turning points [6] :

ρ(r) =
m

4πh̄2a
[µ− m

2
(ω2

⊥
r2

⊥
+ ω2

3
z2)]. (3)

The density is zero outside the turning points. Note that when the scattering length a is

positive, the chemical potential µ is necessarily positive since ρ(r) ≥ 0. This is the situation
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with the BEC of rubidium atoms. It is now straight-forward to calculate the particle number

and the energy using the density given above. The particle number is given by,

N =
∫

d3rρ(r) =
a2

3

15aa⊥
(

2µ

h̄ω⊥

)5/2, (4)

where

a⊥ =

√

h̄

mω⊥

; a3 =

√

h̄

mω3

, (5)

The integration limits are set by the turning points in the z- and the r⊥-directions. These

may be obtained by first performing the z- integration for a fixed r⊥, and then allowing the

latter to vary within the prescribed limits. The condensate energy is obtained by substituting

the expression (3) for the density in Eq.(1), and is given by

E =
a2

3

42aa⊥
(

2µ

h̄ω⊥

)7/2 h̄ω⊥. (6)

As noted before, the kinetic energy term in Eq. (1) is neglected. These are known results.

Before we go further, we note that the ratio E/N = 5µ/7. This is indeed the energy

per particle in a non-interacting fermionic system whose single-particle density of states

g(E) ∝ E3/2, obtained by convolving the state density in a planar parabolic potential, with

the density in the transverse direction.

We now take the crucial step by averaging the density in the direction of the symmetry

axis over the a scale L3 :

ρa(r⊥) =
1

L3

∫

dz ρ(r) . (7)

We refer to ρa as the mock-fermion density for reasons that will be clear soon. The length

scale L3 (−L3/2 ≤ z ≤ L3/2) will be fixed later by fitting the aspect ratio. A little algebra

shows that the result may be written as

ρa(r⊥) =
1

α
ρTF (r⊥), (8)

where
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ρTF (r⊥) =
1

6π2

[

2m

h̄2
(µ− mω2

⊥

2
r2

⊥
)

]3/2

, (9)

and the dimensionless parameter α is given by

α =
L3a

πa2
3

. (10)

The Thomas-Fermi expression for the density, ρTF , given by Eq. (9), is in fact the density

of spinless fermions confined in a harmonic potential in the plane and free to move in the

z-direction. Note from Eqs. (8, 10) that for a3 → 0, the system becomes two-dimensional,

and there is no condensation since ρa → 0. Similarly, the condensation density is depleted

as the scattering length a is increased. Note that 1/α plays the role of the occupancy factor

which is not necessarily unity. It is in this sense we call these particles mock-fermions.

To proceed further we first compute the number of particles N and the condensate

energy E, using ρa(r⊥) as given by Eq. (8). Once again the number of particles is defined

by

N = L3

∫

d2r⊥ρa(r⊥) =
L3

15παa⊥
(

2µ

h̄ω⊥

)5/2. (11)

Substituting for α from Eq.(10) reproduces the particle number given by Eq.(4). The total

energy in fermion-like picture is given by,

E[ρa] =
1

α

∫

d3r

[

h̄2

2m
τ(~r) + U(~r)ρTF (~r)

]

, (12)

where τ(~r) is the kinetic energy density of the fermions in the Thomas-Fermi approximation,

τ(~r) =
1

10π2
(6π2ρTF )5/3 (13)

and U(~r) is the confining oscillator potential in the plane. The particles are of course free

to move in the z-direction, but confined within the length L3. Substituting for the density

and the kinetic energy density in Eq.(12), we immediately obtain the total energy

E =
L3

42παa⊥
(

2µ

h̄ω⊥

)7/2 h̄ω⊥. (14)
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Again, substituting for α yields the energy of the Bose condensate as given by Eq.(6). This

is remarkable since the energy of the interacting bosons in the BEC is identical to that of

the non-interacting mock-fermions.

Note, from Eqs. (11, 14), that both the particle number N and energy E are independent

of the choice of  L3. This is because it comes in the combination L3/α. This does not mean

that the choice of L3 may be arbitrary, since we shall presently see that that the excited state

properties depend crucially on it. A physically meaningful way of fixing the length is to set

it through the aspect ratio
√

< x2 > / < z2 > = ω3/ω⊥. Consequently the size of the cloud

is approximately the same in BEC and in the mock-fermion picture. We have cylindrical

symmetry in the latter instead of ellipsoidal symmetry of the BEC. In the fermion picture

< z2 >= L2

3
/12. The average distance in the plane is (< r2

⊥
>=

2a2

⊥
µ

7h̄ω⊥
) is the same as in the

BEC. Equating the aspect ratios in both pictures we get,

L3 =

√

24µ

7mω2
3

. (15)

This then determines the occupancy factor α uniquely,

α =
a

π

√

12

7

√

2mµ

h̄2
, (16)

where a is the scattering length. Note that α now depends on the chemical potential. To

obtain the sound velocity in the interior of the cloud, we set the density ρa from Eq. (8) to

its central value:

ρa =
1

6π2α

[

2m

h̄2
µ

]3/2

. (17)

But from Eq. (16), α is proportional to
√
µ, yielding the correct linear depence between the

density ρ and µ as in BEC. We then obtain the same sound velocity us as in BEC :

u2

s =
ρa

m

∂µ

∂ρa
=

µ

m
. (18)

By contrast, u2

s = 2µ/3m in a free Fermi gas with constant α. By setting k2

F = 2mµ
h̄2 , we see

from Eq. (16) that α is proportional to the dimensionless quantity akF . This results in the

occupancy factor 1/α being
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1

α
=

√

7

12

λF

2a
. (19)

Since the de Broglie wave length λF = 2π/kF may be regarded as the resolving power, we

may interpret the degeneracy described by the parameter 1/α as the collective number of

the atoms which can be accommodated within a wave length. The quantum mechanical

wave functions of all these atoms overlap substantially over a wave length. Thus a single

“fermion” in our picture is as if made of 1/α number of mock-fermions. It is also easy to

check that

k−1

F = (8πaρ)−1/2 = ξ , (20)

where ξ is the coherence length of the bosons in the condensate [6]. Using the parameters of

the experiment [1], it is straight-forward to get a numerical estimate of this collectivity. For

example, for N = 5000, we find 1/α = 140. Note that in our picture the mock-fermions are

essentially free apart from the confinement in the plane and over a length in the z-direction.

The single fermion excitations in this picture may now be described as the excitation of 1/α

mock-fermions. This has interesting consequences in computing the excitation energies of

the system.

As an immediate application we may consider the vortex states discussed by Dalfalvo

and Stringari [6]. In our Fermi gas picture, we may make an estimate for a vortex excitation

in the static “shell model” picture. For making this estimate, consider the ground state in

which mock-fermions multiply occupy the states of the two-dimensional harmonic oscillator

upto the Fermi energy. Since the density profile of a vortex has a hole in the centre, we may

simulate it by promoting all the s-state mock-fermions out of the Fermi sea to states with

l 6= 0. Each of these s-states contain 1/α mock-fermions in our picture. Keeping N fixed,

the number of l = 0 states below the chemical potential µ is given by µ/(2h̄ω) for large

µ. Since the degeneracy of the harmonic oscillator state just above the the Fermi energy is

(µ+1)/h̄ω⊥, it is possible to promote all the s-state particles to this state (upto a maximum

angular momentum). The excitation energy per particle in the presence of a vortex is then
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given by,

∆E/N =
1

Nα
(

µ

2h̄ω⊥

)2h̄ω⊥. (21)

This should be compared with the energy h̄Ωc calculated by Dalfovo and Stringari [6] for

κ = 1, where Ωc is the critical angular velocity and h̄κ the angular momentum of the vortex.

In Fig.1, we display the result of our estimate for Ωc, obtained from Eq. (21), with the graph

given in [6] for the same. The agreement for large N is good between our calculations and

those obtained by solving the non-linear Schrödinger equation. For comparison we have also

displayed the calculated values of Ωc obtained in the large N limit by Baym and Pethick [5].

While the power law dependence on the chemical potential is the same in our calculation

and in [5], we cannot get the dependence on the logarithm of the chemical potential in the

static shell model type of analysis. In our naive model, the vortex energy is insensitive to

the vortex angular momentum h̄κ upto a maximum.

As pointed out in the introduction, the mock-fermion picture also predicts collective

particle-hole excitations from the filled Fermi level to an excited state, where all 1

α
mock

fermions of a given angular momentum state are excited together. Since the adjacent shells

of the harmonic oscillator have states of opposite parity, excitations to the next higher state

of the 1

α
mock fermions whould entail a huge change in angular momentum. Such high-spin

collective excitaions are unlikely. There could be, however, collective excitations of energy

2

α
h̄ω⊥ and zero angular momentum. Both the above types of excitations are of a novel

collective type, and involve a hundred or more mock-fermions. As such, they are much

larger energy excited states than the ones predicted and analysed by Stringari [9] recently.

To conclude, the Bose-Einstein condensate of interacting bosons is described in

this paper by a noninteracting Fermi gas. We call them mock fermions since they obey a

generalised Pauli principle with the occupancy of a state i given by

ni =
1

α
, ǫi < µ ;

= 0, ǫi > µ . (22)
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This occupancy factor is directly proportional to the coherance length ξ = (8πaρ)−1/2 divided

by the “size” 2a of the atom. The collectivity is generated by the combined motion of 1/α

mock fermions. In passing, it is worth mentioning that an occupancy factor of the type (22)

at T = 0 arises naturally in systems that obey the so-called Haldane statistics [10]. It has also

been noted that in such systems that the single particle density is scaled by the occupancy

factor [11]. Irrespective of this aspect, the present analysis of the bosonic condensate in

terms of mock-fermions is intersting in its own right, although one should only expect it to

hold for global properties, and not for the analysis of correlations.
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FIGURES

FIG. 1. The critical frequency Ωc (in units of ω⊥) is shown as a function of the particle number

in the fermion-like picture (solid line). The dotted line is based on the graph given by Dalfovo and

Stringari[6]. The dashed line is the large N prediction[5].
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