213 research outputs found
A dicarboxylate transporter on the peribacteroid membrane of soybean nodules
AbstractUsing preparations of peribacteroid membrane (PBM)-enclosed bacteroids from soybean root nodules, we show here that the PBM possesses a dicarboxylate transporter capable of mediating a rapid flux of dicarboxylate anions, such as malate and succinate, to the bacteroids inside the nodule. The transporter has a higher affinity for the monovalent malate anion than for the succinate anion (Km = 2 and 15 μM, respectively) although the Vmax for malate− appears to be lower than for succinate− (Vmax = 11 and 30 nmol·min−1·mg protein−1, respectively)
Anisotropy of ultra-thin ferromagnetic films and the spin reorientation transition
The influence of uniaxial anisotropy and the dipole interaction on the
direction of the magnetization of ultra-thin ferromagnetic films in the
ground-state is studied. The ground-state energy can be expressed in terms of
anisotropy constants which are calculated in detail as function of the system
parameters and the film thickness. In particular non-collinear spin
arrangements are taken into account. Conditions for the appearance of a spin
reorientation transition are given and analytic results for the width of the
canted phase and its shift in applied magnetic fields associated with this
transition are derived.Comment: 6 pages, RevTeX
Priming of plant innate immunity by rhizobacteria and beta-aminobutyric acid: differences and similarities in regulation
P>Pseudomonas fluorescens WCS417r bacteria and beta-aminobutyric acid can induce disease resistance in Arabidopsis, which is based on priming of defence. In this study, we examined the differences and similarities of WCS417r- and beta-aminobutyric acid-induced priming. Both WCS417r and beta-aminobutyric acid prime for enhanced deposition of callose-rich papillae after infection by the oomycete Hyaloperonospora arabidopsis. This priming is regulated by convergent pathways, which depend on phosphoinositide- and ABA-dependent signalling components. Conversely, induced resistance by WCS417r and beta-aminobutyric acid against the bacterial pathogen Pseudomonas syringae are controlled by distinct NPR1-dependent signalling pathways. As WCS417r and beta-aminobutyric acid prime jasmonate- and salicylate-inducible genes, respectively, we subsequently investigated the role of transcription factors. A quantitative PCR-based genome-wide screen for putative WCS417r- and beta-aminobutyric acid-responsive transcription factor genes revealed distinct sets of priming-responsive genes. Transcriptional analysis of a selection of these genes showed that they can serve as specific markers for priming. Promoter analysis of WRKY genes identified a putative cis-element that is strongly over-represented in promoters of 21 NPR1-dependent, beta-aminobutyric acid-inducible WRKY genes. Our study shows that priming of defence is regulated by different pathways, depending on the inducing agent and the challenging pathogen. Furthermore, we demon-strated that priming is associated with the enhanced expression of transcription factors. New Phytologist (2009) 183: 419-431doi: 10.1111/j.1469-8137.2009.02851.x
Theory for transport through a single magnetic molecule: Endohedral N@C60
We consider transport through a single N@C60 molecule, weakly coupled to
metallic leads. Employing a density-matrix formalism we derive rate equations
for the occupation probabilities of many-particle states of the molecule. We
calculate the current-voltage characteristics and the differential conductance
for N@C60 in a break junction. Our results reveal Coulomb-blockade behavior as
well as a fine structure of the Coulomb-blockade peaks due to the exchange
coupling of the C60 spin to the spin of the encapsulated nitrogen atom.Comment: 5 pages, 4 figures, v2: version as publishe
Lattice-gas model for alkali-metal fullerides: face-centered-cubic structure
A lattice-gas model is suggested for describing the ordering phenomena in
alkali-metal fullerides of face-centered-cubic structure assuming the electric
charge of alkali ions residing in either octahedral or tetrahedral interstitial
sites is completely screened by the first-neighbor C_60 molecules. This
approximation allows us to derive an effective ion-ion interaction. The van der
Waals interaction between the ion and C_60 molecule is characterized by
introducing an additional energy at the tetrahedral sites. This model is
investigated by using a three-sublattice mean-field approximation and a simple
cluster-variation method. The analysis shows a large variety of phase diagrams
when changing the site energy parameter.Comment: 10 twocolumn pages (REVTEX) including 12 PS figure
Comparative Functional Genomics of Salt Stress in Related Model and Cultivated Plants Identifies and Overcomes Limitations to Translational Genomics
One of the objectives of plant translational genomics is to use knowledge and genes discovered in model species to improve crops. However, the value of translational genomics to plant breeding, especially for complex traits like abiotic stress tolerance, remains uncertain. Using comparative genomics (ionomics, transcriptomics and metabolomics) we analyzed the responses to salinity of three model and three cultivated species of the legume genus Lotus. At physiological and ionomic levels, models responded to salinity in a similar way to crop species, and changes in the concentration of shoot Cl− correlated well with tolerance. Metabolic changes were partially conserved, but divergence was observed amongst the genotypes. Transcriptome analysis showed that about 60% of expressed genes were responsive to salt treatment in one or more species, but less than 1% was responsive in all. Therefore, genotype-specific transcriptional and metabolic changes overshadowed conserved responses to salinity and represent an impediment to simple translational genomics. However, ‘triangulation’ from multiple genotypes enabled the identification of conserved and tolerant-specific responses that may provide durable tolerance across species
Widespread Endogenization of Genome Sequences of Non-Retroviral RNA Viruses into Plant Genomes
Non-retroviral RNA virus sequences (NRVSs) have been found in the chromosomes of vertebrates and fungi, but not plants. Here we report similarly endogenized NRVSs derived from plus-, negative-, and double-stranded RNA viruses in plant chromosomes. These sequences were found by searching public genomic sequence databases, and, importantly, most NRVSs were subsequently detected by direct molecular analyses of plant DNAs. The most widespread NRVSs were related to the coat protein (CP) genes of the family Partitiviridae which have bisegmented dsRNA genomes, and included plant- and fungus-infecting members. The CP of a novel fungal virus (Rosellinia necatrix partitivirus 2, RnPV2) had the greatest sequence similarity to Arabidopsis thaliana ILR2, which is thought to regulate the activities of the phytohormone auxin, indole-3-acetic acid (IAA). Furthermore, partitivirus CP-like sequences much more closely related to plant partitiviruses than to RnPV2 were identified in a wide range of plant species. In addition, the nucleocapsid protein genes of cytorhabdoviruses and varicosaviruses were found in species of over 9 plant families, including Brassicaceae and Solanaceae. A replicase-like sequence of a betaflexivirus was identified in the cucumber genome. The pattern of occurrence of NRVSs and the phylogenetic analyses of NRVSs and related viruses indicate that multiple independent integrations into many plant lineages may have occurred. For example, one of the NRVSs was retained in Ar. thaliana but not in Ar. lyrata or other related Camelina species, whereas another NRVS displayed the reverse pattern. Our study has shown that single- and double-stranded RNA viral sequences are widespread in plant genomes, and shows the potential of genome integrated NRVSs to contribute to resolve unclear phylogenetic relationships of plant species
- …