47,103 research outputs found

    Syntomic cohomology and Beilinson's Tate conjecture for Kâ‚‚

    No full text

    Time-Reversal Symmetry in Non-Hermitian Systems

    Full text link
    For ordinary hermitian Hamiltonians, the states show the Kramers degeneracy when the system has a half-odd-integer spin and the time reversal operator obeys \Theta^2=-1, but no such a degeneracy exists when \Theta^2=+1. Here we point out that for non-hermitian systems, there exists a degeneracy similar to Kramers even when \Theta^2=+1. It is found that the new degeneracy follows from the mathematical structure of split-quaternion, instead of quaternion from which the Kramers degeneracy follows in the usual hermitian cases. Furthermore, we also show that particle/hole symmetry gives rise to a pair of states with opposite energies on the basis of the split quaternion in a class of non-hermitian Hamiltonians. As concrete examples, we examine in detail NxN Hamiltonians with N=2 and 4 which are non-hermitian generalizations of spin 1/2 Hamiltonian and quadrupole Hamiltonian of spin 3/2, respectively.Comment: 40 pages, 2 figures; typos fixed, references adde

    Toward a systems understanding of plant–microbe interactions

    Get PDF
    Plants are closely associated with microorganisms including pathogens and mutualists that influence plant fitness. Molecular genetic approaches have uncovered a number of signaling components from both plants and microbes and their mode of actions. However, signaling pathways are highly interconnected and influenced by diverse sets of environmental factors. Therefore, it is important to have systems views in order to understand the true nature of plant–microbe interactions. Indeed, systems biology approaches have revealed previously overlooked or misinterpreted properties of the plant immune signaling network. Experimental reconstruction of biological networks using exhaustive combinatorial perturbations is particularly powerful to elucidate network structure and properties and relationships among network components. Recent advances in metagenomics of microbial communities associated with plants further point to the importance of systems approaches and open a research area of microbial community reconstruction. In this review, we highlight the importance of a systems understanding of plant–microbe interactions, with a special emphasis on reconstruction strategies

    Intersecting D-brane states derived from the KP theory

    Full text link
    A general scheme to find tachyon boundary states is developed within the framework of the theory of KP hierarchy. The method is applied to calculate correlation function of intersecting D-branes and rederived the results of our previous works as special examples. A matrix generalization of this scheme provides a method to study dynamics of coincident multi D-branes.Comment: 10 page

    Anti-D-brane as Dark Matter in Warped String Compactification

    Full text link
    It is pointed out that in the warped string compactification, motion of anti-D-branes near the bottom of a throat behaves like dark matter. Several scenarios for production of the dark matter are suggested, including one based on the D/anti-D interaction at the late stage of D/anti-D inflation.Comment: 8 pages, version accepted for publication as a Rapid Communication in PRD, discussion about mass and production of dark matte

    The Multicomponent KP Hierarchy: Differential Fay Identities and Lax Equations

    Full text link
    In this article, we show that four sets of differential Fay identities of an NN-component KP hierarchy derived from the bilinear relation satisfied by the tau function of the hierarchy are sufficient to derive the auxiliary linear equations for the wave functions. From this, we derive the Lax representation for the NN-component KP hierarchy, which are equations satisfied by some pseudodifferential operators with matrix coefficients. Besides the Lax equations with respect to the time variables proposed in \cite{2}, we also obtain a set of equations relating different charge sectors, which can be considered as a generalization of the modified KP hierarchy proposed in \cite{3}.Comment: 19 page

    Simulation of Transitions between "Pasta" Phases in Dense Matter

    Full text link
    Calculations of equilibrium properties of dense matter predict that at subnuclear densities nuclei can be rodlike or slablike. To investigate whether transitions between phases with non-spherical nuclei can occur during the collapse of a star, we perform quantum molecular dynamic simulations of the compression of dense matter. We have succeeded in simulating the transitions between rodlike and slablike nuclei and between slablike nuclei and cylindrical bubbles. Our results strongly suggest that non-spherical nuclei can be formed in the inner cores of collapsing stars.Comment: 4 pages, 4 figures, final version published in Phys. Rev. Lett., high-res figures can be seen at http://www.nordita.dk/~gentaro/research/fig

    Phenomenology of Neutrino Mass Matrix

    Get PDF
    The search for possible mixing patterns of charged leptons and neutrinos is important to get clues of the origin of nearly maximal mixings, since there are some preferred bases of the lepton mass matrices given by underlying theories. We systematically examine the mixing patterns which could lead to large lepton mixing angles. We find out 37 mixing patterns are consistent with experimental data if taking into account phase factors in the mixing matrices. Only 6 patterns of them can explain the observed data without any tuning of parameters, while the others need particular choices for phase values.Comment: revised reference
    • …
    corecore