1,290 research outputs found

    Prospective observational study of point-of-care creatinine in trauma.

    Get PDF
    Background:Patients with trauma are at risk for renal dysfunction from hypovolemia or urological injury. In austere environments, creatinine values are not available to guide resuscitation. A new portable device, the Stat Sensor Point-of-care (POC) Whole Blood Creatinine Analyzer, provides accurate results in <30 s and requires minimal training. This device has not been evaluated in trauma despite the theoretical benefit it provides. The purpose of this study is to determine the clinical impact of the POC device in trauma. Methods:40 patients with trauma were enrolled in a prospective observational study. One drop of blood was used for creatinine determination on the Statsensor POC device. POC creatinine results were compared to the laboratory. Turnaround time (TAT) for POC and laboratory methods was calculated as well as time elapsed to CT scan if applicable. Results:Patients (n=40) were enrolled between December 2014 and March 2015. POC creatinine values were similar to laboratory methods with a mean bias of 0.075±0.27 (p=0.08). Mean analytical TATs for the POC measurements were significantly faster than the laboratory method (11.6±10.0 min vs 78.1±27.9 min, n=40, p<0.0001). Mean elapsed time before arrival at the CT scanner was 52.9±34.2 min. Conclusions:The POC device reported similar creatinine values to the laboratory and provided significantly faster results. POC creatinine testing is a promising development for trauma practice in austere environments and workup of a subset of stable patients with trauma. Further study is warranted to determine clinical impact, both in hospital-based trauma and austere environments

    Evolving wormhole geometries within nonlinear electrodynamics

    Get PDF
    In this work, we explore the possibility of evolving (2+1) and (3+1)-dimensional wormhole spacetimes, conformally related to the respective static geometries, within the context of nonlinear electrodynamics. For the (3+1)-dimensional spacetime, it is found that the Einstein field equation imposes a contracting wormhole solution and the obedience of the weak energy condition. Nevertheless, in the presence of an electric field, the latter presents a singularity at the throat, however, for a pure magnetic field the solution is regular. For the (2+1)-dimensional case, it is also found that the physical fields are singular at the throat. Thus, taking into account the principle of finiteness, which states that a satisfactory theory should avoid physical quantities becoming infinite, one may rule out evolving (3+1)-dimensional wormhole solutions, in the presence of an electric field, and the (2+1)-dimensional case coupled to nonlinear electrodynamics.Comment: 17 pages, 1 figure; to appear in Classical and Quantum Gravity. V2: minor corrections, including a referenc

    CP violation in the effective action of the Standard Model

    Full text link
    Following a suggestion by Smit, the CP odd terms of the effective action of the Standard Model, obtained by integration of quarks and leptons, are computed to sixth order within a strict covariant derivative expansion approach. No other approximations are made. The final result so derived includes all Standard Model gauge fields and Higgs. Remarkably, at the order considered in this work, all parity violating contributions turn out to be zero. Non vanishing CP violating terms are obtained in the C-odd P-even sector. These are several orders of magnitude larger than perturbative estimates. Various unexpected regularities in the final result are noted.Comment: 32 pages, no figures. Section added. To appear in JHE

    Traversable wormholes coupled to nonlinear electrodynamics

    Get PDF
    In this work we explore the possible existence of static, spherically symmetric and stationary, axisymmetric traversable wormholes coupled to nonlinear electrodynamics. Considering static and spherically symmetric (2+1) and (3+1)-dimensional wormhole spacetimes, we verify the presence of an event horizon and the non-violation of the null energy condition at the throat. For the former spacetime, the principle of finiteness is imposed, in order to obtain regular physical fields at the throat. Next, we analyze the (2+1)-dimensional stationary and axisymmetric wormhole, and also verify the presence of an event horizon, rendering the geometry non-traversable. Relatively to the (3+1)-dimensional stationary and axisymmetric wormhole geometry, we find that the field equations impose specific conditions that are incompatible with the properties of wormholes. Thus, we prove the non-existence of the general class of traversable wormhole solutions, outlined above, within the context of nonlinear electrodynamics.Comment: 9 pages, Revtex4. V2: major change in title; considerable additions in the Introduction and in the rotating solution, no physics changes; correction of a reference, one reference added; now 10 pages. This version to appear in Classical and Quantum Gravit

    QCD equation of state in a virial expansion

    Full text link
    We describe recent three-flavor QCD lattice data for the pressure, speed of soun d and interaction measure at nonzero temperature and vanishing chemical potentia l within a virial expansion. For the deconfined phase we use a phenomenological model which includes non-pert urbative effects from dimension two gluon condensates that reproduce the free en ergy of quenched QCD very well. The hadronic phase is parameterized by a generalized resonance-gas model. Furthermore, we extend this approach to finite quark densities introducing an ex plicit μ\mu-dependence of the interaction. We calculate pressure, quark-number density, entropy and energy density and compare to results of lattice calculatio ns. We, additionally, investigate the structure of the phase diagram by calculating the isobaric and isentropic lines as well as the critical endpoint in the (T,μqT, \mu_q )-plane.Comment: 9 pages, 11 figures. Submitted to Phys. Rev.

    Impediments to mixing classical and quantum dynamics

    Full text link
    The dynamics of systems composed of a classical sector plus a quantum sector is studied. We show that, even in the simplest cases, (i) the existence of a consistent canonical description for such mixed systems is incompatible with very basic requirements related to the time evolution of the two sectors when they are decoupled. (ii) The classical sector cannot inherit quantum fluctuations from the quantum sector. And, (iii) a coupling among the two sectors is incompatible with the requirement of physical positivity of the theory, i.e., there would be positive observables with a non positive expectation value.Comment: RevTex, 21 pages. Title slightly modified and summary section adde

    The thickness of HI in galactic discs under MOND: theory and application to the Galaxy

    Full text link
    The outskirts of galaxies are a very good laboratory for testing the nature of the gravitational field at low accelerations. By assuming that the neutral hydrogen gas is in hydrostatic equilibrium in the gravitational potential of the host galaxy, the observed flaring of the gas layer can be used to test modified gravities. For the first time we construct a simple framework to derive the scaleheight of the neutral hydrogen gas disc in the MOND scenario and apply this to the Milky Way. It is shown that using a constant gas velocity dispersion of ~9 km/s, MOND is able to give a very good fit to the observed HI flaring beyond a galactocentric distance of 17 kpc up to the last measured point (~40 kpc). Between 10 and 16 kpc, however, the observed scaleheight is about 40% more than what MOND predicts for the standard interpolating function and 70% for the form suggested by Famaey & Binney. Given the uncertainties in the non-thermal pressure support by cosmic rays and magnetic fields, MOND seems to be a plausible alternative to dark matter in explaining the Milky Way flaring. Studying the flaring of extended HI discs in external edge-on galaxies may be a promising approach to assess the viability of MOND.Comment: 13 pages, 4 figure

    Direct construction of the effective action of chiral gauge fermions in the anomalous sector

    Full text link
    The anomaly implies an obstruction to a fully chiral covariant calculation of the effective action in the abnormal parity sector of chiral theories. The standard approach then is to reconstruct the anomalous effective action from its covariant current. In this work we use a recently introduced formulation which allows to directly construct the non trivial chiral invariant part of the effective action within a fully covariant formalism. To this end we develop an appropriate version of Chan's approach to carry out the calculation within the derivative expansion. The result to four derivatives, i.e., to leading order in two and four dimensions and next-to-leading order in two dimensions, is explicitly worked out. Fairly compact expressions are found for these terms.Comment: 19 pages, revtex, no figures. Writing improved. (Refers to arXiv:0807.1696.

    Gauge invariant derivative expansion of the effective action at finite temperature and density and the scalar field in 2+1 dimensions

    Get PDF
    A method is presented for the computation of the one-loop effective action at finite temperature and density. The method is based on an expansion in the number of spatial covariant derivatives. It applies to general background field configurations with arbitrary internal symmetry group and space-time dependence. Full invariance under small and large gauge transformations is preserved without assuming stationary or Abelian fields nor fixing the gauge. The method is applied to the computation of the effective action of spin zero particles in 2+1 dimensions at finite temperature and density and in presence of background gauge fields. The calculation is carried out through second order in the number of spatial covariant derivatives. Some limiting cases are worked out.Comment: 34 pages, REVTEX, no figures. Further comments adde

    The Semileptonic BB to K1(1270,1400)K_1(1270,1400) Decays in QCD Sum Rules

    Get PDF
    We analyze the semileptonic rare decays of BB meson to K1(1270)K_{1} (1270) and K1(1400)K_{1} (1400) axial vector mesons. The BK1(1270,1400)+B\to K_{1} (1270,1400) \ell^+ \ell^- decays are significant flavor changing neutral current decays of the BB meson. These decays are sensitive to the new physics beyond SM, since these processes are forbidden at tree level at SM. These decays occurring at the quark level via bs+b\to s \ell^+ \ell^- transition, also provide new opportunities for calculating the CKM matrix elements VbtV_{bt} and VtsV_{ts}. In this study, the transition form factors of the BK1(1270,1400)+B\to K_{1} (1270,1400) \ell^+ \ell^- decays are calculated using three-point QCD sum rules approach. The resulting form factors are used to estimate the branching fractions of these decays.Comment: 18 pages, 7 figures, version to appear in JP
    corecore