5,543 research outputs found
Fermi-LAT upper limits on gamma-ray emission from colliding wind binaries
Context: Colliding wind binaries (CWBs) are thought to give rise to a
plethora of physical processes including acceleration and interaction of
relativistic particles. Observation of synchrotron radiation in the radio band
confirms there is a relativistic electron population in CWBs. Accordingly, CWBs
have been suspected sources of high-energy gamma-ray emission since the COS-B
era. Theoretical models exist that characterize the underlying physical
processes leading to particle acceleration and quantitatively predict the
non-thermal energy emission observable at Earth. Aims: We strive to find
evidence of gamma-ray emission from a sample of seven CWB systems: WR 11, WR
70, WR 125, WR 137, WR 140, WR 146, and WR 147. Theoretical modelling
identified these systems as the most favourable candidates for emitting
gamma-rays. We make a comparison with existing gamma-ray flux predictions and
investigate possible constraints. Methods: We used 24 months of data from the
Large Area Telescope (LAT) on-board the Fermi Gamma Ray Space Telescope to
perform a dedicated likelihood analysis of CWBs in the LAT energy range.
Results: We find no evidence of gamma-ray emission from any of the studied CWB
systems and determine corresponding flux upper limits. For some CWBs the
interplay of orbital and stellar parameters renders the Fermi-LAT data not
sensitive enough to constrain the parameter space of the emission models. In
the cases of WR140 and WR147, the Fermi-LAT upper limits appear to rule out
some model predictions entirely and constrain theoretical models over a
significant parameter space. A comparison of our findings to the CWB eta Car is
made.Comment: 9 pages, 3 figure
Restoration of oligodendrocyte pools in a mouse model of chronic cerebral hypoperfusion
Chronic cerebral hypoperfusion, a sustained modest reduction in cerebral blood flow, is associated with damage to myelinated axons and cognitive decline with ageing. Oligodendrocytes (the myelin producing cells) and their precursor cells (OPCs) may be vulnerable to the effects of hypoperfusion and in some forms of injury OPCs have the potential to respond and repair damage by increased proliferation and differentiation. Using a mouse model of cerebral hypoperfusion we have characterised the acute and long term responses of oligodendrocytes and OPCs to hypoperfusion in the corpus callosum. Following 3 days of hypoperfusion, numbers of OPCs and mature oligodendrocytes were significantly decreased compared to controls. However following 1 month of hypoperfusion, the OPC pool was restored and increased numbers of oligodendrocytes were observed. Assessment of proliferation using PCNA showed no significant differences between groups at either time point but showed reduced numbers of proliferating oligodendroglia at 3 days consistent with the loss of OPCs. Cumulative BrdU labelling experiments revealed higher numbers of proliferating cells in hypoperfused animals compared to controls and showed a proportion of these newly generated cells had differentiated into oligodendrocytes in a subset of animals. Expression of GPR17, a receptor important for the regulation of OPC differentiation following injury, was decreased following short term hypoperfusion. Despite changes to oligodendrocyte numbers there were no changes to the myelin sheath as revealed by ultrastructural assessment and fluoromyelin however axon-glial integrity was disrupted after both 3 days and 1 month hypoperfusion. Taken together, our results demonstrate the initial vulnerability of oligodendroglial pools to modest reductions in blood flow and highlight the regenerative capacity of these cells
Recommended from our members
Upper ocean climate of the Eastern Mediterranean Sea during the Holocene Insolation Maximum â a model study
ine thousand years ago (9 ka BP), the Northern Hemisphere experienced enhanced seasonality caused by an orbital configuration close to the minimum of the precession index. To assess the impact of this "Holocene Insolation Maximum" (HIM) on the Mediterranean Sea, we use a regional ocean general circulation model forced by atmospheric input derived from global simulations. A stronger seasonal cycle is simulated by the model, which shows a relatively homogeneous winter cooling and a summer warming with well-defined spatial patterns, in particular, a subsurface warming in the Cretan and western Levantine areas.
The comparison between the SST simulated for the HIM and a reconstruction from planktonic foraminifera transfer functions shows a poor agreement, especially for summer, when the vertical temperature gradient is strong. As a novel approach, we propose a reinterpretation of the reconstruction, to consider the conditions throughout the upper water column rather than at a single depth. We claim that such a depth-integrated approach is more adequate for surface temperature comparison purposes in a situation where the upper ocean structure in the past was different from the present-day. In this case, the depth-integrated interpretation of the proxy data strongly improves the agreement between modelled and reconstructed temperature signal with the subsurface summer warming being recorded by both model and proxies, with a small shift to the south in the model results.
The mechanisms responsible for the peculiar subsurface pattern are found to be a combination of enhanced downwelling and wind mixing due to strengthened Etesian winds, and enhanced thermal forcing due to the stronger summer insolation in the Northern Hemisphere. Together, these processes induce a stronger heat transfer from the surface to the subsurface during late summer in the western Levantine; this leads to an enhanced heat piracy in this region, a process never identified before, but potentially characteristic of time slices with enhanced insolation
Non-thermal high-energy emission from colliding winds of massive stars
Colliding winds of massive star binary systems are considered as potential
sites of non-thermal high-energy photon production. This is motivated merely by
the detection of synchrotron radio emission from the expected colliding wind
location. Here we investigate the properties of high-energy photon production
in colliding winds of long-period WR+OB-systems. We found that in the
dominating leptonic radiation process anisotropy and Klein-Nishina effects may
yield spectral and variability signatures in the gamma-ray domain at or above
the sensitivity of current or upcoming gamma-ray telescopes. Analytical
formulae for the steady-state particle spectra are derived assuming diffusive
particle acceleration out of a pool of thermal wind particles, and taking into
account adiabatic and all relevant radiative losses. For the first time we
include their advection/convection in the wind collision zone, and distinguish
two regions within this extended region: the acceleration region where spatial
diffusion is superior to convective/advective motion, and the convection region
defined by the convection time shorter than the diffusion time scale. The
calculation of the Inverse Compton radiation uses the full Klein-Nishina cross
section, and takes into account the anisotropic nature of the scattering
process. This leads to orbital flux variations by up to several orders of
magnitude which may, however, be blurred by the geometry of the system. The
calculations are applied to the typical WR+OB-systems WR 140 and WR 147 to
yield predictions of their expected spectral and temporal characteristica and
to evaluate chances to detect high-energy emission with the current and
upcoming gamma-ray experiments. (abridged)Comment: 67 pages, 24 figures, submitted to Ap
Leptonic and Hadronic Modeling of Fermi-Detected Blazars
We describe new implementations of leptonic and hadronic models for the
broadband emission from relativistic jets in AGN in a temporary steady state.
For the leptonic model, a temporary equilibrium between particle
injection/acceleration, radiative cooling, and escape from a spherical emission
region is evaluated, and the self-consistent radiative output is calculated.
For the hadronic model, a temporary equilibrium between particle
injection/acceleration, radiative and adiabatic cooling, and escape is
evaluated for both primary electrons and protons. A new, semi-analytical method
to evaluate the radiative output from cascades initiated by internal
gamma-gamma pair production is presented. We use our codes to fit snap-shot
spectral energy distributions of a representative set of Fermi-LAT detected
blazars. We find that the leptonic model provides acceptable fits to the SEDs
of almost all blazars with parameters close to equipartition between the
magnetic field and the relativistic electron population. However, the hard
gamma-ray spectrum of AO 0235+164, in contrast to the very steep IR-optical-UV
continuum, poses a severe problem for the leptonic model. If charge neutrality
in leptonic models is provided by cold protons, the kinetic energy carried by
the jet should be dominated by protons. We find satisfactory representations of
the snapshot SEDs of most blazars in our sample with the hadronic model
presented here. However, in the case of two quasars the characteristic break at
a few GeV energies can not be well modelled. All of our hadronic model fits
require powers in relativistic protons in the range L_p ~ 1e47 - 1e49 erg/s.Comment: Accepted for Publication in The Astrophysical Journa
The redshift-dependence of gamma-ray absorption in the environments of strong-line AGN
The case of gamma-ray absorption due to photon-photon pair production of jet
photons in the external photon environment like accretion disk and broad-line
region radiation field of gamma-ray loud active galactic nuclei (AGN) that
exhibit strong emission lines is considered. I demonstrate that this ''local
opacity'', if detected, will almost unavoidably be redshift-dependent in the
sub-TeV range. This introduces non-negligible biases, and complicates
approaches for studying the evolution of the extragalactic background light
with contemporary GeV instruments like e.g. the Gamma-ray Large Area Space
Telescope (GLAST), etc., where the gamma-ray horizon is probed by means of
statistical analysis of absorption features (e.g. Fazio-Stecker relation, etc.)
in AGN spectra at various redshifts. It particularly applies to strong-line
quasars where external photon fields are potentially involved in gamma-ray
production.Comment: 19 pages, 5 figures; accepted for publication in Ap
BL Lac Contribution to the Extragalactic Gamma-Ray Background
Very high energy gamma-rays from blazars traversing cosmological distances
through the metagalactic radiation field can convert into electron-positron
pairs in photon-photon collisions. The converted gamma-rays initiate
electromagnetic cascades driven by inverse-Compton scattering off the microwave
background photons. Using a model for the time-dependent metagalactic radiation
field consistent with all currently available far-infrared-to-optical data, we
calculate the cascade contribution from faint, unresolved high- and low-peaked
blazars to the extragalactic gamma-ray background as measured by EGRET. For
low-peaked blazars, we adopt a spectral index consistent with the mean spectral
index of EGRET detected blazars, and the luminosity function determined by
Chiang and Mukherjee (1998). For high-peaked blazars, we adopt template spectra
matching prototype sources observed with air-Cherenkov telescopes up to 30 TeV,
and a luminosity function based on X-ray measurements. The low number of about
20 for nearby high-peaked blazars with a flux exceeding 10^-11 cm^-2 s^-1 above
300 GeV inferred from the luminosity function is consistent with the results
from air-Cherenkov telescope observations. Including the cascade emission from
higher redshifts, the total high-peaked blazar contribution to the observed
gamma-ray background at GeV energies can account up to about 30.Comment: 8 pages, 7 figures, accepted by A&A, final versio
Who Is Sitting at the Reference Desk?: The Ever-Changing Concept of Staffing the Reference Desk at the Bio-Medical Library
Providing excellent reference service at the University of Minnesotaâs Bio-Medical Library has always been a source of pride and a goal to those of us who work at the reference desk. With tightening budgets and shrinking staff numbers, who works at the reference desk is drastically changing. The Bio-Medical Library has always been in a unique position to offer the opportunity of working at the reference desk to staff members across all departments, including those who at other libraries would not normally be given the option to staff the desk. From circulation staff to technical services staff to our fee-based services staff (InfoNOW) to our current project of training a few undergraduate student workers, the Bio-Medical Library staff has created a unique reference desk environment. This article will discuss the many different ways the Bio-Medical Library keeps the reference desk functioning with its unique and multi-departmental staff
- âŠ