5,543 research outputs found

    Fermi-LAT upper limits on gamma-ray emission from colliding wind binaries

    Full text link
    Context: Colliding wind binaries (CWBs) are thought to give rise to a plethora of physical processes including acceleration and interaction of relativistic particles. Observation of synchrotron radiation in the radio band confirms there is a relativistic electron population in CWBs. Accordingly, CWBs have been suspected sources of high-energy gamma-ray emission since the COS-B era. Theoretical models exist that characterize the underlying physical processes leading to particle acceleration and quantitatively predict the non-thermal energy emission observable at Earth. Aims: We strive to find evidence of gamma-ray emission from a sample of seven CWB systems: WR 11, WR 70, WR 125, WR 137, WR 140, WR 146, and WR 147. Theoretical modelling identified these systems as the most favourable candidates for emitting gamma-rays. We make a comparison with existing gamma-ray flux predictions and investigate possible constraints. Methods: We used 24 months of data from the Large Area Telescope (LAT) on-board the Fermi Gamma Ray Space Telescope to perform a dedicated likelihood analysis of CWBs in the LAT energy range. Results: We find no evidence of gamma-ray emission from any of the studied CWB systems and determine corresponding flux upper limits. For some CWBs the interplay of orbital and stellar parameters renders the Fermi-LAT data not sensitive enough to constrain the parameter space of the emission models. In the cases of WR140 and WR147, the Fermi-LAT upper limits appear to rule out some model predictions entirely and constrain theoretical models over a significant parameter space. A comparison of our findings to the CWB eta Car is made.Comment: 9 pages, 3 figure

    Restoration of oligodendrocyte pools in a mouse model of chronic cerebral hypoperfusion

    Get PDF
    Chronic cerebral hypoperfusion, a sustained modest reduction in cerebral blood flow, is associated with damage to myelinated axons and cognitive decline with ageing. Oligodendrocytes (the myelin producing cells) and their precursor cells (OPCs) may be vulnerable to the effects of hypoperfusion and in some forms of injury OPCs have the potential to respond and repair damage by increased proliferation and differentiation. Using a mouse model of cerebral hypoperfusion we have characterised the acute and long term responses of oligodendrocytes and OPCs to hypoperfusion in the corpus callosum. Following 3 days of hypoperfusion, numbers of OPCs and mature oligodendrocytes were significantly decreased compared to controls. However following 1 month of hypoperfusion, the OPC pool was restored and increased numbers of oligodendrocytes were observed. Assessment of proliferation using PCNA showed no significant differences between groups at either time point but showed reduced numbers of proliferating oligodendroglia at 3 days consistent with the loss of OPCs. Cumulative BrdU labelling experiments revealed higher numbers of proliferating cells in hypoperfused animals compared to controls and showed a proportion of these newly generated cells had differentiated into oligodendrocytes in a subset of animals. Expression of GPR17, a receptor important for the regulation of OPC differentiation following injury, was decreased following short term hypoperfusion. Despite changes to oligodendrocyte numbers there were no changes to the myelin sheath as revealed by ultrastructural assessment and fluoromyelin however axon-glial integrity was disrupted after both 3 days and 1 month hypoperfusion. Taken together, our results demonstrate the initial vulnerability of oligodendroglial pools to modest reductions in blood flow and highlight the regenerative capacity of these cells

    Non-thermal high-energy emission from colliding winds of massive stars

    Full text link
    Colliding winds of massive star binary systems are considered as potential sites of non-thermal high-energy photon production. This is motivated merely by the detection of synchrotron radio emission from the expected colliding wind location. Here we investigate the properties of high-energy photon production in colliding winds of long-period WR+OB-systems. We found that in the dominating leptonic radiation process anisotropy and Klein-Nishina effects may yield spectral and variability signatures in the gamma-ray domain at or above the sensitivity of current or upcoming gamma-ray telescopes. Analytical formulae for the steady-state particle spectra are derived assuming diffusive particle acceleration out of a pool of thermal wind particles, and taking into account adiabatic and all relevant radiative losses. For the first time we include their advection/convection in the wind collision zone, and distinguish two regions within this extended region: the acceleration region where spatial diffusion is superior to convective/advective motion, and the convection region defined by the convection time shorter than the diffusion time scale. The calculation of the Inverse Compton radiation uses the full Klein-Nishina cross section, and takes into account the anisotropic nature of the scattering process. This leads to orbital flux variations by up to several orders of magnitude which may, however, be blurred by the geometry of the system. The calculations are applied to the typical WR+OB-systems WR 140 and WR 147 to yield predictions of their expected spectral and temporal characteristica and to evaluate chances to detect high-energy emission with the current and upcoming gamma-ray experiments. (abridged)Comment: 67 pages, 24 figures, submitted to Ap

    Leptonic and Hadronic Modeling of Fermi-Detected Blazars

    Full text link
    We describe new implementations of leptonic and hadronic models for the broadband emission from relativistic jets in AGN in a temporary steady state. For the leptonic model, a temporary equilibrium between particle injection/acceleration, radiative cooling, and escape from a spherical emission region is evaluated, and the self-consistent radiative output is calculated. For the hadronic model, a temporary equilibrium between particle injection/acceleration, radiative and adiabatic cooling, and escape is evaluated for both primary electrons and protons. A new, semi-analytical method to evaluate the radiative output from cascades initiated by internal gamma-gamma pair production is presented. We use our codes to fit snap-shot spectral energy distributions of a representative set of Fermi-LAT detected blazars. We find that the leptonic model provides acceptable fits to the SEDs of almost all blazars with parameters close to equipartition between the magnetic field and the relativistic electron population. However, the hard gamma-ray spectrum of AO 0235+164, in contrast to the very steep IR-optical-UV continuum, poses a severe problem for the leptonic model. If charge neutrality in leptonic models is provided by cold protons, the kinetic energy carried by the jet should be dominated by protons. We find satisfactory representations of the snapshot SEDs of most blazars in our sample with the hadronic model presented here. However, in the case of two quasars the characteristic break at a few GeV energies can not be well modelled. All of our hadronic model fits require powers in relativistic protons in the range L_p ~ 1e47 - 1e49 erg/s.Comment: Accepted for Publication in The Astrophysical Journa

    The redshift-dependence of gamma-ray absorption in the environments of strong-line AGN

    Get PDF
    The case of gamma-ray absorption due to photon-photon pair production of jet photons in the external photon environment like accretion disk and broad-line region radiation field of gamma-ray loud active galactic nuclei (AGN) that exhibit strong emission lines is considered. I demonstrate that this ''local opacity'', if detected, will almost unavoidably be redshift-dependent in the sub-TeV range. This introduces non-negligible biases, and complicates approaches for studying the evolution of the extragalactic background light with contemporary GeV instruments like e.g. the Gamma-ray Large Area Space Telescope (GLAST), etc., where the gamma-ray horizon is probed by means of statistical analysis of absorption features (e.g. Fazio-Stecker relation, etc.) in AGN spectra at various redshifts. It particularly applies to strong-line quasars where external photon fields are potentially involved in gamma-ray production.Comment: 19 pages, 5 figures; accepted for publication in Ap

    BL Lac Contribution to the Extragalactic Gamma-Ray Background

    Get PDF
    Very high energy gamma-rays from blazars traversing cosmological distances through the metagalactic radiation field can convert into electron-positron pairs in photon-photon collisions. The converted gamma-rays initiate electromagnetic cascades driven by inverse-Compton scattering off the microwave background photons. Using a model for the time-dependent metagalactic radiation field consistent with all currently available far-infrared-to-optical data, we calculate the cascade contribution from faint, unresolved high- and low-peaked blazars to the extragalactic gamma-ray background as measured by EGRET. For low-peaked blazars, we adopt a spectral index consistent with the mean spectral index of EGRET detected blazars, and the luminosity function determined by Chiang and Mukherjee (1998). For high-peaked blazars, we adopt template spectra matching prototype sources observed with air-Cherenkov telescopes up to 30 TeV, and a luminosity function based on X-ray measurements. The low number of about 20 for nearby high-peaked blazars with a flux exceeding 10^-11 cm^-2 s^-1 above 300 GeV inferred from the luminosity function is consistent with the results from air-Cherenkov telescope observations. Including the cascade emission from higher redshifts, the total high-peaked blazar contribution to the observed gamma-ray background at GeV energies can account up to about 30.Comment: 8 pages, 7 figures, accepted by A&A, final versio

    Who Is Sitting at the Reference Desk?: The Ever-Changing Concept of Staffing the Reference Desk at the Bio-Medical Library

    Get PDF
    Providing excellent reference service at the University of Minnesota’s Bio-Medical Library has always been a source of pride and a goal to those of us who work at the reference desk. With tightening budgets and shrinking staff numbers, who works at the reference desk is drastically changing. The Bio-Medical Library has always been in a unique position to offer the opportunity of working at the reference desk to staff members across all departments, including those who at other libraries would not normally be given the option to staff the desk. From circulation staff to technical services staff to our fee-based services staff (InfoNOW) to our current project of training a few undergraduate student workers, the Bio-Medical Library staff has created a unique reference desk environment. This article will discuss the many different ways the Bio-Medical Library keeps the reference desk functioning with its unique and multi-departmental staff
    • 

    corecore