1,409 research outputs found

    Exact analytic results for the Gutzwiller wave function with finite magnetization

    Full text link
    We present analytic results for ground-state properties of Hubbard-type models in terms of the Gutzwiller variational wave function with non-zero values of the magnetization m. In dimension D=1 approximation-free evaluations are made possible by appropriate canonical transformations and an analysis of Umklapp processes. We calculate the double occupation and the momentum distribution, as well as its discontinuity at the Fermi surface, for arbitrary values of the interaction parameter g, density n, and magnetization m. These quantities determine the expectation value of the one-dimensional Hubbard Hamiltonian for any symmetric, monotonically increasing dispersion epsilon_k. In particular for nearest-neighbor hopping and densities away from half filling the Gutzwiller wave function is found to predict ferromagnetic behavior for sufficiently large interaction U.Comment: REVTeX 4, 32 pages, 8 figure

    Quantum phase transitions and collapse of the Mott gap in the d=1+ϵd=1+\epsilon dimensional half-filled Hubbard model

    Get PDF
    We study the low-energy asymptotics of the half-filled Hubbard model with a circular Fermi surface in d=1+ϵd=1+\epsilon continuous dimensions, based on the one-loop renormalization-group (RG) method. Peculiarity of the d=1+ϵd=1+\epsilon dimensions is incorporated through the mathematica structure of the elementary particle-partcile (PP) and particle-hole (PH) loops: infrared logarithmic singularity of the PH loop is smeared for ϵ>0\epsilon>0. The RG flows indicate that a quantum phase transition (QPT) from a metallic phase to the Mott insulator phase occurs at a finite on-site Coulomb repulsion UU for ϵ>0\epsilon>0. We also discuss effects of randomness.Comment: 12 pages, 10 eps figure

    Correlation and surface effects in Vanadium Oxides

    Full text link
    Recent photoemission experiments have shown strong surface modifications in the spectra from vanadium oxides as (V,Cr)_2O_3 or (Sr,Ca)VO_3. The effective mass is enhanced at the surface and the coherent part of the surface spectrum is narrowed as compared to the bulk. The quasiparticle weight is more sensitive at the surface than in the bulk against bandwidth variations. We investigate these effects theoretically considering the single-band Hubbard model for a film geometry. A simplified dynamical mean-field scheme is used to calculate the main features of the interacting layer-dependent spectral function. It turns out that the experimentally confirmed effects are inherent properties of a system of strongly correlated electrons. The reduction of the weight and the variance of the coherent part of the surface spectrum can be traced back to the reduced surface coordination number. Surface correlation effects can be strongly amplified by changes of the hopping integrals at the surface.Comment: to appear in PRB; 8 pages, 6 figure

    Many-body position operator in lattice fermionic systems with periodic boundary conditions

    Full text link
    A total position operator XX in the position representation is derived for lattice fermionic systems with periodic boundary conditions. The operator is shown to be Hermitian, the generator of translations in momentum space, and its time derivative is shown to correspond to the total current operator in a periodic system. The operator is such that its moments can be calculated up to any order. To demonstrate its utility finite size scaling is applied to the Brinkman-Rice transition as well as metallic and insulating Gutzwiller wavefunctions.Comment: to appear in Journal of Physics A: Mathematical and General (reference will be added later

    Equivalence of the Falicov-Kimball and Brandt-Mielsch forms for the free energy of the infinite-dimensional Falicov-Kimball model

    Full text link
    Falicov and Kimball proposed a real-axis form for the free energy of the Falicov-Kimball model that was modified for the coherent potential approximation by Plischke. Brandt and Mielsch proposed an imaginary-axis form for the free energy of the dynamical mean field theory solution of the Falicov-Kimball model. It has long been known that these two formulae are numerically equal to each other; an explicit derivation showing this equivalence is presented here.Comment: 4 pages, 1 figure, typeset with ReVTe

    Hole dynamics in generalized spin backgrounds in infinite dimensions

    Full text link
    We calculate the dynamical behaviour of a hole in various spin backgrounds in infinite dimensions, where it can be determined exactly. We consider hypercubic lattices with two different types of spin backgrounds. On one hand we study an ensemble of spin configurations with an arbitrary spin probability on each sublattice. This model corresponds to a thermal average over all spin configurations in the presence of staggered or uniform magnetic fields. On the other hand we consider a definite spin state characterized by the angle between the spins on different sublattices, i.e a classical spin system in an external magnetic field. When spin fluctuations are considered, this model describes the physics of unpaired particles in strong coupling superconductors.Comment: Accepted in Phys. Rev. B. 18 pages of text (1 fig. included) in Latex + 2 figures in uuencoded form containing the 2 postscripts (mailed separately

    Efficient single-photon emission from electrically driven InP quantum dots epitaxially grown on Si(001)

    Full text link
    The heteroepitaxy of III-V semiconductors on silicon is a promising approach for making silicon a photonic platform for on-chip optical interconnects and quantum optical applications. Monolithic integration of both material systems is a long-time challenge, since different material properties lead to high defect densities in the epitaxial layers. In recent years, nanostructures however have shown to be suitable for successfully realising light emitters on silicon, taking advantage of their geometry. Facet edges and sidewalls can minimise or eliminate the formation of dislocations, and due to the reduced contact area, nanostructures are little affected by dislocation networks. Here we demonstrate the potential of indium phosphide quantum dots as efficient light emitters on CMOS-compatible silicon substrates, with luminescence characteristics comparable to mature devices realised on III-V substrates. For the first time, electrically driven single-photon emission on silicon is presented, meeting the wavelength range of silicon avalanche photo diodes' highest detection efficiency

    Multi-epoch Doppler tomography and polarimetry of QQ Vul

    Get PDF
    We present multi-epoch high-resolution spectroscopy and photoelectric polarimetry of the long-period polar (AM Herculis star) QQ Vul. The blue emission lines show several distinct components, the sharpest of which can unequivocally be assigned to the illuminated hemisphere of the secondary star and used to trace its orbital motion. This narrow emission line can be used in combination with Nai-absorption lines from the photosphere of the companion to build a stable long-term ephemeris for the star: inferior conjunction of the companion occurs at HJD = 244 8446.4710(5)+E×0. d 15452011(11). The polarization curves are dissimilar at different epochs, thus supporting the idea of fundamental changes of the accretion geometry, e.g. between one- and two-pole accretion modes. The linear polarization pulses display a random scatter by 0.2 phase units and are not suitable for the determination of the binary period. The polarization data suggest that the magnetic (dipolar) axis has a co-latitude of 23 ◦ , an azimuth of −50 ◦, and an orbital inclination between 50 ◦ and 70 ◦. Doppler images of blue emission and red absorption lines show a clear separatio

    Electronic State and Magnetic Susceptibility in Orbitally Degenerate (J=5/2) Periodic Anderson Model

    Full text link
    Magnetic susceptibility in a heavy fermion systemis composed of the Pauli term (\chi_P) and the Van-Vleck term (\chi_V). The latter comes from the interband excitation, where f-orbital degeneracy is essential. In this work, we study \chi_P and \chi_V in the orbitally degenerate (J=5/2) periodic Anderson model for both the metallic and insulating cases. The effect of the correlation between f-electrons is investigated using the self-consistent second-order perturbation theory. The main results are as follows. (i) Sixfold degenerate model: both \chi_P and \chi_V are enhanced by a factor of 1/z (z is the renormalization constant). (ii) Nondegenerate model: only \chi_P is enhanced by 1/z. Thus, orbital degeneracy is indispensable for enhancement of \chi_V. Moreover, orbital degeneracy reduces the Wilson ratio and stabilizes a nonmagnetic Fermi liquid state.Comment: 4 pages, revtex, to be published in J. Phys. Soc. Jpn. (No.8

    Effective Nucleon-Nucleon Interaction and Fermi Liquid Theory

    Get PDF
    We present two novel relations between the quasiparticle interaction in nuclear matter and the unique low momentum nucleon-nucleon interaction in vacuum. These relations provide two independent constraints on the Fermi liquid parameters of nuclear matter. Moreover, the new constraints define two combinations of Fermi liquid parameters, which are invariant under the renormalization group flow in the particle-hole channels. Using empirical values for the spin-independent Fermi liquid parameters, we are able to compute the major spin-dependent ones by imposing the new constraints as well as the Pauli principle sum rules.Comment: 4 pages, 5 figures, in Proc. 11th International Conference on Recent Progress in Many-Body Theories, Manchester, UK, July 9-13, 200
    corecore