Recent photoemission experiments have shown strong surface modifications in
the spectra from vanadium oxides as (V,Cr)_2O_3 or
(Sr,Ca)VO_3. The effective mass is enhanced at the surface and the coherent
part of the surface spectrum is narrowed as compared to the bulk. The
quasiparticle weight is more sensitive at the surface than in the bulk against
bandwidth variations. We investigate these effects theoretically considering
the single-band Hubbard model for a film geometry. A simplified dynamical
mean-field scheme is used to calculate the main features of the interacting
layer-dependent spectral function. It turns out that the experimentally
confirmed effects are inherent properties of a system of strongly correlated
electrons. The reduction of the weight and the variance of the coherent part of
the surface spectrum can be traced back to the reduced surface coordination
number. Surface correlation effects can be strongly amplified by changes of the
hopping integrals at the surface.Comment: to appear in PRB; 8 pages, 6 figure