190 research outputs found

    Electronic Transport Properties of Pentacene Single Crystals upon Exposure to Air

    Get PDF
    We report the effect of air exposure on the electronic properties of pentacene single crystals. Air can diffuse reversibly in and out of the crystals and controls the physical properties. We discern two competing mechanisms that modulate the electronic transport. The presence of oxygen increases the hole conduction, as in dark four O2 molecules introduce one charge carrier. This effect is enhanced by the presence of visible light. Contrarily, water, present in ambient air, is incorporated in the crystal lattice and forms trapping sites for injected charges.Comment: 16 pages, 3 figure

    Low-Voltage Polymer/Small-Molecule Blend Organic Thin-Film Transistors and Circuits Fabricated via Spray Deposition

    Get PDF
    Organic thin-film electronics have long been considered an enticing candidate in achieving high-throughput manufacturing of low-power ubiquitous electronics. However, to achieve this goal, more work is required to reduce operating voltages and develop suitable mass-manufacture techniques. Here, we demonstrate low-voltage spray-cast organic thin-film transistors based on a semiconductor blend of 2,8-difluoro- 5,11-bis (triethylsilylethynyl) anthradithiophene and poly(triarylamine). Both semiconductor and dielectric films are deposited via successive spray deposition in ambient conditions (air with 40%–60% relative humidity) without any special precautions. Despite the simplicity of the deposition method, p-channel transistors with hole mobilities of \u3e1 cm2/Vs are realized at −4 V operation, and unipolar inverters operating at −6 V are demonstrated

    Micro-Raman Imaging of Isomeric Segregation in Small-Molecule Organic Semiconductors

    Get PDF
    Charge transport in organic semiconductors is highly sensitive to film heterogeneity and intermolecular interactions, but probing these properties on the length scales of disorder is often difficult. Here we use micro-Raman spectroscopy to assign vibrational modes of isomerically pure syn and anti 2,8-difluoro-5,11-bis(triethylsilylethynyl)anthradithiophene (diF-TES ADT) by comparing to density functional theory calculations. With polarization-dependent measurements, we determine the orientation of crystallites in pure isomers. In mixed-isomer samples, we observe narrow linewidths and superposition spectra, indicating coexistence of isomerically pure sub-domains on length scales smaller than the probe area. Using the ring breathing modes close to 1300 cm−1 as indicators of the pure isomer crystalline sub-domains, we image their spatial distribution with 200-nm resolution. These results demonstrate the power of micro-Raman spectroscopy for investigating spatial heterogeneities and clarifying the origin of the reduced charge carrier mobility displayed in mixed-isomer diF-TES ADT

    Organic Field-Effect Transistors as Flexible, Tissue-Equivalent Radiation Dosimeters in Medical Applications

    Get PDF
    Radiation therapy is one of the most prevalent procedures for cancer treatment, but the risks of malignancies induced by peripheral beam in healthy tissues surrounding the target is high. Therefore, being able to accurately measure the exposure dose is a critical aspect of patient care. Here a radiation detector based on an organic field‐effect transistor (RAD‐OFET) is introduced, an in vivo dosimeter that can be placed directly on a patient\u27s skin to validate in real time the dose being delivered and ensure that for nearby regions an acceptable level of low dose is being received. This device reduces the errors faced by current technologies in approximating the dose profile in a patient\u27s body, is sensitive for doses relevant to radiation treatment procedures, and robust when incorporated into conformal large‐area electronics. A model is proposed to describe the operation of RAD‐OFETs, based on the interplay between charge photogeneration and trapping

    Low-Temperature Phase Transitions in a Soluble Oligoacene and Their Effect on Device Performance and Stability

    Get PDF
    The use of organic semiconductors in high-performance organic field-effect transistors requires a thorough understanding of the effects that processing conditions, thermal, and bias-stress history have on device operation. Here, we evaluate the temperature dependence of the electrical properties of transistors fabricated with 2,8-difluoro-5,11-bis(triethylsilylethynyl)anthradithiophene, a material that has attracted much attention recently due to its exceptional electrical properties. We have discovered a phase transition at T = 205 K and discuss its implications on device performance and stability. We examined the impact of this low-temperature phase transition on the thermodynamic, electrical, and structural properties of both single crystals and thin films of this material. Our results show that while the changes to the crystal structure are reversible, the induced thermal stress yields irreversible degradation of the devices

    Quantitative Analysis of the Density of Trap States at the Semiconductor-Dielectric Interface in Organic Field-Effect Transistors

    Get PDF
    The electrical properties of organic field-effect transistors are governed by the quality of the constituting layers, and the resulting interfaces. We compare the properties of the same organic semiconductor film, 2,8-difluoro- 5,11-bis (triethylsilylethynyl) anthradithiophene, with bottom SiO2 dielectric and top Cytop dielectric and find a 10× increase in charge carrier mobility, from 0.17 ± 0.19 cm2 V−1 s−1 to 1.5 ± 0.70 cm2 V−1 s−1, when the polymer dielectric is used. This results from a significant reduction of the trap density of states in the semiconductor band-gap, and a decrease in the contact resistance

    A Simple and Robust Approach to Reducing Contact Resistance in Organic Transistors

    Get PDF
    Efficient injection of charge carriers from the contacts into the semiconductor layer is crucial for achieving high-performance organic devices. The potential drop necessary to accomplish this process yields a resistance associated with the contacts, namely the contact resistance. A large contact resistance can limit the operation of devices and even lead to inaccuracies in the extraction of the device parameters. Here, we demonstrate a simple and efficient strategy for reducing the contact resistance in organic thin-film transistors by more than an order of magnitude by creating high work function domains at the surface of the injecting electrodes to promote channels of enhanced injection. We find that the method is effective for both organic small molecule and polymer semiconductors, where we achieved a contact resistance as low as 200 Ωcm and device charge carrier mobilities as high as 20 cm2V−1s−1, independent of the applied gate voltage

    Orbital order induced metal-insulator transition in (La,Ca)MnO3

    Get PDF
    We present evidence that the insulator to metal transition in (La,Ca)MnO3 near x~0.2 is driven by the suppression of coherent Jahn-Teller distortions, originating from d type orbital ordering. The orbital ordered state is characterised by large long-range Q2 distortions below To*-o'. Above To*-o' we find evidence for coexistence between an orbital-ordered and -disordered state. This behaviour is discussed in terms of electronic phases of an orbital ordered insulating and orbital-disordered metallic states.Comment: 5 pages, including 5 figure

    Computationally Aided Design of a High-Performance Organic Semiconductor: The Development of a Universal Crystal Engineering Core

    Get PDF
    Herein, we describe the design and synthesis of a suite of molecules based on a benzodithiophene “universal crystal engineering core”. After computationally screening derivatives, a trialkylsilylethyne-based crystal engineering strategy was employed to tailor the crystal packing for use as the active material in an organic field-effect transistor. Electronic structure calculations were undertaken to reveal derivatives that exhibit exceptional potential for high-efficiency hole transport. The promising theoretical properties are reflected in the preliminary device results, with the computationally optimized material showing simple solution processing, enhanced stability, and a maximum hole mobility of 1.6 cm2 V−1 s−1
    corecore