6 research outputs found

    3D structure design of magnetic ferrite cores using gelcasting and pressure-less sintering process

    Get PDF
    Gelcasting is a well established process for ceramics manufacturing which recently has been proved to be successful for soft ferrites as well. This approach is particularly interesting for power electronics application in which the magnetic components (e.g. transformers and inductors) are three dimensionally integrated on the power module substrate. This paper proposes a gelcasting process adapted to make it more effective for 3D heterogeneous integration. The main novelties in this direction consist of low solid load (65wt%) and gelation without catalyst to improve casting and de-airing steps. The magnetic properties of gelcast samples are compared with commercial materials and correlated with the microstructure

    Structure and Dynamics of Ionic Micelles: MD Simulation and Neutron Scattering Study

    No full text
    Fully atomistic molecular dynamics (MD) simulations have been carried out on sodium dodecyl sulfate (SDS), an anionic micelle, and three cationic (C<sub><i>n</i></sub>TAB; <i>n</i> = 12, 14, 16) micelles, investigating the effects of size, the form of the headgroup, and chain length. They have been used to analyze neutron scattering data. MD simulations confirm the dynamical model of global motion of the whole micelle, segmental motion (headgroup and alkyl chain), and fast torsional motion associated with the surfactants that is used to analyze the experimental data. It is found that the solvent surrounding the headgroups results in their significant mobility, which exceeds that of the tails on the nanosecond time scale. The middle of the chain is found to be least mobile, consolidating the micellar configuration. This dynamical feature is similar for all the ionic micelles investigated and therefore independent of headgroup form and charge and chain length. Diffusion constants for global and segmental motion of the different micelles are consistent with experimentally obtained values as well as known structural features. This work provides a more realistic model of micelle dynamics and offers new insight into the strongly fluctuating surface of micelles which is important in understanding micelle dispersion and related functionality, like drug delivery

    Cost effectiveness of chest pain unit care in the NHS.

    Full text link
    Background Acute chest pain is responsible for approximately 700,000 patient attendances per year at emergency departments in England and Wales. A single centre study of selected patients suggested that chest pain unit (CPU) care could be less costly and more effective than routine care for these patients, although a more recent multi-centre study cast doubt on the generalisability of these findings. Methods Our economic evaluation involved modelling data from the ESCAPE multi-centre trial along with data from other sources to estimate the comparative costs and effects of CPU versus routine care. Cost effectiveness ratios (cost per QALY) were generated from our model. Results We found that CPU compared to routine care resulted in a non-significant increase in effectiveness of 0.0075 QALYs per patient and a non-significant cost decrease of £32 per patient and thus a negative incremental cost effectiveness ratio. If we are willing to pay £20,000 for an additional QALY then there is a 70% probability that CPU care will be considered cost-effective. Conclusion Our analysis shows that CPU care is likely to be slightly more effective and less expensive than routine care, however, these estimates are surrounded by a substantial amount of uncertainty. We cannot reliably conclude that establishing CPU care will represent a cost-effective use of health service resources given the substantial amount of investment it would require
    corecore