143 research outputs found

    Irreversibility and Polymer Adsorption

    Full text link
    Physisorption or chemisorption from dilute polymer solutions often entails irreversible polymer-surface bonding. We present a theory of the non-equilibrium layers which result. While the density profile and loop distribution are the same as for equilibrium layers, the final layer comprises a tightly bound inner part plus an outer part whose chains make only fN surface contacts where N is chain length. The contact fractions f follow a broad distribution, P(f) ~ f^{-4/5}, in rather close agreement with strong physisorption experiments [H. M. Schneider et al, Langmuir v.12, p.994 (1996)].Comment: 4 pages, submitted to Phys. Rev. Let

    The truth and beauty of chemical potentials

    Get PDF
    This essay in honour of Mike Brown addresses aspects of chemical equilibrium and equilibration in rocks, with a focus on the role that chemical potentials play. Chemical equilibrium is achieved by diffusive attening of chemical potential gradients. The idea of equilibration volume is developed, and the way equilibration volumes may evolve along a pressure-temperature path is discussed. The effect of the environment of an equilibration volume is key to understanding the evolution of the equilibration volume with changing conditions. The likely behaviour of equilibration volumes is used to suggest why preservation of equilibrium mineral assemblages and mineral compositions from metamorphism tends to occur. This line of logic then provides the conceptual support to conventional equilibrium thermodynamic approaches to studying rocks, using, for example, thermobarometry and pseudosections.PostprintPeer reviewe

    Non-Equilibrium in Adsorbed Polymer Layers

    Full text link
    High molecular weight polymer solutions have a powerful tendency to deposit adsorbed layers when exposed to even mildly attractive surfaces. The equilibrium properties of these dense interfacial layers have been extensively studied theoretically. A large body of experimental evidence, however, indicates that non-equilibrium effects are dominant whenever monomer-surface sticking energies are somewhat larger than kT, a common case. Polymer relaxation kinetics within the layer are then severely retarded, leading to non-equilibrium layers whose structure and dynamics depend on adsorption kinetics and layer ageing. Here we review experimental and theoretical work exploring these non-equilibrium effects, with emphasis on recent developments. The discussion addresses the structure and dynamics in non-equilibrium polymer layers adsorbed from dilute polymer solutions and from polymer melts and more concentrated solutions. Two distinct classes of behaviour arise, depending on whether physisorption or chemisorption is involved. A given adsorbed chain belonging to the layer has a certain fraction of its monomers bound to the surface, f, and the remainder belonging to loops making bulk excursions. A natural classification scheme for layers adsorbed from solution is the distribution of single chain f values, P(f), which may hold the key to quantifying the degree of irreversibility in adsorbed polymer layers. Here we calculate P(f) for equilibrium layers; we find its form is very different to the theoretical P(f) for non-equilibrium layers which are predicted to have infinitely many statistical classes of chain. Experimental measurements of P(f) are compared to these theoretical predictions.Comment: 29 pages, Submitted to J. Phys.: Condens. Matte

    Genetic variation and relationship among content of vitamins, pigments, and sugars in baby leaf lettuce

    No full text
    Baby leaf lettuce harvested approximately 30 days after planting is the primary component of spring mix salads, a popular type of packaged salads. Very little is known, however, about the content of vitamins, sugars, and pigments in young lettuce plants. Therefore, plants of 42 accessions harvested at baby leaf stage were analyzed for the contents of vitamin C, ß‐carotene, anthocyanins, chlorophylls, glucose, fructose, and sucrose. Significant differences among accessions were found for content of all seven compounds plus sucrose sweetness equivalency (SSE) and average vitamin load (AVLAC). “Floricos” was highest in all sugars, SSE and vitamin C; “Taiwan” was highest in ß‐carotene and AVLAC, and “Annapolis” and “Darkland” were highest for anthocyanins and chlorophyll contents, respectively. The lowest content of glucose and sucrose was found in iceberg “Salinas,” fructose in L. serriola accession UC96US23, vitamin C in PI 257288, and β‐carotene in “Solar.” The lowest relative sweetness (SSE) was calculated for UC96US23, followed by “Salinas,” while the lowest AVLAC was estimated for PI 257288. There were very strong, positive correlations among contents of the three sugars, and between β‐carotene and vitamin C, and β‐carotene and anthocyanins. Composition profiles of accessions presented in this study, together with identified associations between compounds, can be used by breeders, growers, and producers to select lettuces with desirable combinations of sugars, pigments, and vitamins. This information can help in development of new cultivars and breeding lines with desirable combination of traits, pleasing taste, and higher vitamin content
    corecore