21,333 research outputs found

    Editorial Comment on the Special Issue of "Information in Dynamical Systems and Complex Systems"

    Full text link
    This special issue collects contributions from the participants of the "Information in Dynamical Systems and Complex Systems" workshop, which cover a wide range of important problems and new approaches that lie in the intersection of information theory and dynamical systems. The contributions include theoretical characterization and understanding of the different types of information flow and causality in general stochastic processes, inference and identification of coupling structure and parameters of system dynamics, rigorous coarse-grain modeling of network dynamical systems, and exact statistical testing of fundamental information-theoretic quantities such as the mutual information. The collective efforts reported herein reflect a modern perspective of the intimate connection between dynamical systems and information flow, leading to the promise of better understanding and modeling of natural complex systems and better/optimal design of engineering systems

    Searching for BSM neutrino interactions in dark matter detectors

    Full text link
    Neutrino interactions beyond the Standard Model (BSM) are theoretically well motivated and have an important impact on the future precision measurement of neutrino oscillation. In this work, we study the sensitivity of a multi-ton-scale liquid Xenon dark matter detector equipped with an intense radiative neutrino source to various BSM neutrino-electron interactions. We consider the conventional Non-Standard Interactions (NSIs), other more generalized four-fermion interactions including scalar and tensor forms, and light-boson mediated interactions. The work shows that with realistic experimental setups, one can achieve unprecedented sensitivity to these BSM neutrino-electron interactions.Comment: fig. 7 added, matches the published versio

    Direct observation of ultrafast thermal and non-thermal lattice deformation of polycrystalline Aluminum film

    Full text link
    The dynamics of thermal and non-thermal lattice deformation of nanometer thick polycrystalline aluminum film has been studied by means of femtosecond (fs) time-resolved electron diffraction. We utilized two different pump wavelengths: 800 nm, the fundamental of Ti: sapphire laser and 1250 nm generated by a home-made optical parametric amplifier(OPA). Our data show that, although coherent phonons were generated under both conditions, the diffraction intensity decayed with the characteristic time of 0.9+/-0.3 ps and 1.7+/-0.3 ps under 800 nm and 1250 nm excitation, respectively. Because the 800 nm laser excitation corresponds to the strong interband transition of aluminum due to the 1.55 eV parallel band structure, our experimental data indicate the presence of non-thermal lattice deformation under 800 nm excitation, which occurs on a time-scale that is shorter than the thermal processes dominated by electron-phonon coupling under 1250 nm excitation

    Quench Dynamics of Entanglement in an Opened Anisotropic Spin-1/2 Heisenberg Chain

    Full text link
    The quantum entanglement dynamics of a one-dimensional spin-1/2 anisotropic XXZ model is studied using the method of the adaptive time-dependent density-matrix renormalization-group when two cases of quenches are performed in the system. An anisotropic interaction quench and the maximum number of domain walls of staggered magnetization quench are considered. The dynamics of pairwise entanglement between the nearest two qubits in the spin chain is investigated. The entanglement of the two-spin qubits can be created and oscillates in both cases of the quench. The anisotropic interaction has a strong influence on the oscillation frequency of entanglement.Comment: 13 pages, 4 figure

    Interacting Attention-gated Recurrent Networks for Recommendation

    Full text link
    Capturing the temporal dynamics of user preferences over items is important for recommendation. Existing methods mainly assume that all time steps in user-item interaction history are equally relevant to recommendation, which however does not apply in real-world scenarios where user-item interactions can often happen accidentally. More importantly, they learn user and item dynamics separately, thus failing to capture their joint effects on user-item interactions. To better model user and item dynamics, we present the Interacting Attention-gated Recurrent Network (IARN) which adopts the attention model to measure the relevance of each time step. In particular, we propose a novel attention scheme to learn the attention scores of user and item history in an interacting way, thus to account for the dependencies between user and item dynamics in shaping user-item interactions. By doing so, IARN can selectively memorize different time steps of a user's history when predicting her preferences over different items. Our model can therefore provide meaningful interpretations for recommendation results, which could be further enhanced by auxiliary features. Extensive validation on real-world datasets shows that IARN consistently outperforms state-of-the-art methods.Comment: Accepted by ACM International Conference on Information and Knowledge Management (CIKM), 201
    • …
    corecore