9 research outputs found

    Intravenous iron is non-inferior to oral iron regarding cell growth and iron metabolism in colorectal cancer associated with iron-deficiency anaemia

    Get PDF
    © 2021 The Authors. Published by Springer. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1038/s41598-021-93155-2Oral iron promotes intestinal tumourigenesis in animal models. In humans, expression of iron transport proteins are altered in colorectal cancer. This study examined whether the route of iron therapy alters iron transport and tumour growth. Colorectal adenocarcinoma patients with pre-operative iron deficiency anaemia received oral ferrous sulphate (n = 15), or intravenous ferric carboxymaltose (n = 15). Paired (normal and tumour tissues) samples were compared for expression of iron loading, iron transporters, proliferation, apoptosis and Wnt signalling using immunohistochemistry and RT-PCR. Iron loading was increased in tumour and distributed to the stroma in intravenous treatment and to the epithelium in oral treatment. Protein and mRNA expression of proliferation and iron transporters were increased in tumours compared to normal tissues but there were no significant differences between the treatment groups. However, intravenous iron treatment reduced ferritin mRNA levels in tumours and replenished body iron stores. Iron distribution to non-epithelial cells in intravenous iron suggests that iron is less bioavailable to tumour cells. Therefore, intravenous iron may be a better option in the treatment of colorectal cancer patients with iron deficiency anaemia due to its efficiency in replenishing iron levels while its effect on proliferation and iron metabolism is similar to that of oral iron treatment.Published versio

    Defining acute ischemic stroke tissue pathophysiology with whole brain CT perfusion

    No full text
    BACKGROUND: This study aimed to identify and validate whole brain perfusion computed tomography (CTP) thresholds for ischemic core and salvageable penumbra in acute stroke patients and develop a probability based model to increase the accuracy of tissue pathophysiology measurements. METHODS: One hundred and eighty-three patients underwent multimodal stroke CT using a 320-slice scanner within 6hours of acute stroke onset, followed by 24hour MRI that included diffusion weighted imaging (DWI) and dynamic susceptibility weighted perfusion imaging (PWI). Coregistered acute CTP and 24hour DWI was used to identify the optimum single perfusion parameter thresholds to define penumbra (in patients without reperfusion), and ischemic core (in patients with reperfusion), using a pixel based receiver operator curve analysis. Then, these results were used to develop a sigma curve fitted probability based model incorporating multiple perfusion parameter thresholds. RESULTS: For single perfusion thresholds, a time to peak (TTP) of +5seconds best defined the penumbra (area under the curve, AUC 0.79 CI 0.74-0.83) while a cerebral blood flow (CBF) of < 50% best defined the acute ischemic core (AUC 0.73, CI 0.69-0.77). The probability model was more accurate at detecting the ischemic core (AUC 0.80 SD 0.75-0.83) and penumbra (0.85 SD 0.83-0.87) and was significantly closer in volume to the corresponding reference DWI (P=0.031). CONCLUSIONS: Whole brain CTP can accurately identify penumbra and ischemic core using similar thresholds to previously validated 16 or 64 slice CTP. Additionally, a novel probability based model was closer to defining the ischemic core and penumbra than single thresholds

    SPECIFIC HEAT OF HoYB2C

    No full text
    The magnetic superconductor HoNi2B2C was studied by specific heat measurements in magnetic fields up to 2 T. The specific heat jump Delta C due to the superconducting transition at (T) over bar(c) = 8.15 K is about 140 mJ/mol K. In the scope of the Abrikosov-Gor'kov pair-breaking theory, this value is in line with a Sommerfeld value of about 19 mJ/mol K-2 as observed for the non-magnetic superconductors YNi2B2C and LuNi2B2C
    corecore