647 research outputs found

    Power Utility Maximization in Discrete-Time and Continuous-Time Exponential Levy Models

    Full text link
    Consider power utility maximization of terminal wealth in a 1-dimensional continuous-time exponential Levy model with finite time horizon. We discretize the model by restricting portfolio adjustments to an equidistant discrete time grid. Under minimal assumptions we prove convergence of the optimal discrete-time strategies to the continuous-time counterpart. In addition, we provide and compare qualitative properties of the discrete-time and continuous-time optimizers.Comment: 18 pages, to appear in Mathematical Methods of Operations Research. The final publication is available at springerlink.co

    Fractional smoothness and applications in finance

    Full text link
    This overview article concerns the notion of fractional smoothness of random variables of the form g(XT)g(X_T), where X=(Xt)t∈[0,T]X=(X_t)_{t\in [0,T]} is a certain diffusion process. We review the connection to the real interpolation theory, give examples and applications of this concept. The applications in stochastic finance mainly concern the analysis of discrete time hedging errors. We close the review by indicating some further developments.Comment: Chapter of AMAMEF book. 20 pages

    On the harmonic measure of stable processes

    Full text link
    Using three hypergeometric identities, we evaluate the harmonic measure of a finite interval and of its complementary for a strictly stable real L{\'e}vy process. This gives a simple and unified proof of several results in the literature, old and recent. We also provide a full description of the corresponding Green functions. As a by-product, we compute the hitting probabilities of points and describe the non-negative harmonic functions for the stable process killed outside a finite interval

    From Relational Data to Graphs: Inferring Significant Links using Generalized Hypergeometric Ensembles

    Full text link
    The inference of network topologies from relational data is an important problem in data analysis. Exemplary applications include the reconstruction of social ties from data on human interactions, the inference of gene co-expression networks from DNA microarray data, or the learning of semantic relationships based on co-occurrences of words in documents. Solving these problems requires techniques to infer significant links in noisy relational data. In this short paper, we propose a new statistical modeling framework to address this challenge. It builds on generalized hypergeometric ensembles, a class of generative stochastic models that give rise to analytically tractable probability spaces of directed, multi-edge graphs. We show how this framework can be used to assess the significance of links in noisy relational data. We illustrate our method in two data sets capturing spatio-temporal proximity relations between actors in a social system. The results show that our analytical framework provides a new approach to infer significant links from relational data, with interesting perspectives for the mining of data on social systems.Comment: 10 pages, 8 figures, accepted at SocInfo201

    Disordered quantum wires: microscopic origins of the DMPK theory and Ohm's law

    Full text link
    We study the electronic transport properties of the Anderson model on a strip, modeling a quasi one-dimensional disordered quantum wire. In the literature, the standard description of such wires is via random matrix theory (RMT). Our objective is to firmly relate this theory to a microscopic model. We correct and extend previous work (arXiv:0912.1574) on the same topic. In particular, we obtain through a physically motivated scaling limit an ensemble of random matrices that is close to, but not identical to the standard transfer matrix ensembles (sometimes called TOE, TUE), corresponding to the Dyson symmetry classes \beta=1,2. In the \beta=2 class, the resulting conductance is the same as the one from the ideal ensemble, i.e.\ from TUE. In the \beta=1 class, we find a deviation from TOE. It remains to be seen whether or not this deviation vanishes in a thick-wire limit, which is the experimentally relevant regime. For the ideal ensembles, we also prove Ohm's law for all symmetry classes, making mathematically precise a moment expansion by Mello and Stone. This proof bypasses the explicit but intricate solution methods that underlie most previous results.Comment: Corrects and extends arXiv:0912.157

    A stochastic network with mobile users in heavy traffic

    Full text link
    We consider a stochastic network with mobile users in a heavy-traffic regime. We derive the scaling limit of the multi-dimensional queue length process and prove a form of spatial state space collapse. The proof exploits a recent result by Lambert and Simatos which provides a general principle to establish scaling limits of regenerative processes based on the convergence of their excursions. We also prove weak convergence of the sequences of stationary joint queue length distributions and stationary sojourn times.Comment: Final version accepted for publication in Queueing Systems, Theory and Application

    On truncated variation, upward truncated variation and downward truncated variation for diffusions

    Get PDF
    The truncated variation, TVcTV^c, is a fairly new concept introduced in [5]. Roughly speaking, given a c\`adl\`ag function ff, its truncated variation is "the total variation which does not pay attention to small changes of ff, below some threshold c>0c>0". The very basic consequence of such approach is that contrary to the total variation, TVcTV^c is always finite. This is appealing to the stochastic analysis where so-far large classes of processes, like semimartingales or diffusions, could not be studied with the total variation. Recently in [6], another characterization of TVcTV^c was found. Namely TVcTV^c is the smallest total variation of a function which approximates ff uniformly with accuracy c/2c/2. Due to these properties we envisage that TVcTV^c might be a useful concept to the theory of processes. For this reason we determine some properties of TVcTV^c for some well-known processes. In course of our research we discover intimate connections with already known concepts of the stochastic processes theory. Firstly, for semimartingales we proved that TVcTV^c is of order c−1c^{-1} and the normalized truncated variation converges almost surely to the quadratic variation of the semimartingale as c↘0c\searrow0. Secondly, we studied the rate of this convergence. As this task was much more demanding we narrowed to the class of diffusions (with some mild additional assumptions). We obtained the weak convergence to a so-called Ocone martingale. These results can be viewed as some kind of large numbers theorem and the corresponding central limit theorem. All the results above were obtained in a functional setting, viz. we worked with processes describing the growth of the truncated variation in time. Moreover, in the same respect we also treated two closely related quantities - the so-called upward truncated variation and downward truncated variation.Comment: Added Remark 6 and Remark 15. Some exposition improvement and fixed constant

    Relativistic diffusion processes and random walk models

    Get PDF
    The nonrelativistic standard model for a continuous, one-parameter diffusion process in position space is the Wiener process. As well-known, the Gaussian transition probability density function (PDF) of this process is in conflict with special relativity, as it permits particles to propagate faster than the speed of light. A frequently considered alternative is provided by the telegraph equation, whose solutions avoid superluminal propagation speeds but suffer from singular (non-continuous) diffusion fronts on the light cone, which are unlikely to exist for massive particles. It is therefore advisable to explore other alternatives as well. In this paper, a generalized Wiener process is proposed that is continuous, avoids superluminal propagation, and reduces to the standard Wiener process in the non-relativistic limit. The corresponding relativistic diffusion propagator is obtained directly from the nonrelativistic Wiener propagator, by rewriting the latter in terms of an integral over actions. The resulting relativistic process is non-Markovian, in accordance with the known fact that nontrivial continuous, relativistic Markov processes in position space cannot exist. Hence, the proposed process defines a consistent relativistic diffusion model for massive particles and provides a viable alternative to the solutions of the telegraph equation.Comment: v3: final, shortened version to appear in Phys. Rev.

    Analysis of Fourier transform valuation formulas and applications

    Full text link
    The aim of this article is to provide a systematic analysis of the conditions such that Fourier transform valuation formulas are valid in a general framework; i.e. when the option has an arbitrary payoff function and depends on the path of the asset price process. An interplay between the conditions on the payoff function and the process arises naturally. We also extend these results to the multi-dimensional case, and discuss the calculation of Greeks by Fourier transform methods. As an application, we price options on the minimum of two assets in L\'evy and stochastic volatility models.Comment: 26 pages, 3 figures, to appear in Appl. Math. Financ
    • 

    corecore