2,839 research outputs found

    An NPZ Model with State-Dependent Delay due to Size-Structure in Juvenile Zooplankton

    Get PDF
    The study of planktonic ecosystems is important as they make up the bottom trophic levels of aquatic food webs. We study a closed Nutrient-Phytoplankton-Zooplankton (NPZ) model that includes size structure in the juvenile zooplankton. The closed nature of the system allows the formulation of a conservation law of biomass that governs the system. The model consists of a system of nonlinear ordinary differential equation coupled to a partial differential equation. We are able to transform this system into a system of delay differential equations where the delay is of threshold type and is state-dependent. The system of delay differential equations can be further transformed into one with fixed delay. Using the different forms of the model we perform a qualitative analysis of the solutions, which includes studying existence and uniqueness, positivity and boundedness, local and global stability, and conditions for extinction. Key parameters that are explored are the total biomass in the system and the maturity level at which the juvenile zooplankton reach maturity. Numerical simulations are also performed to verify our analytical results

    Nematic-Wetted Colloids in the Isotropic Phase: Pairwise Interaction, Biaxiality and Defects

    Full text link
    We calculate the interaction between two spherical colloidal particles embedded in the isotropic phase of a nematogenic liquid. The surface of the particles induces wetting nematic coronas that mediate an elastic interaction. In the weak wetting regime, we obtain exact results for the interaction energy and the texture, showing that defects and biaxiality arise, although they are not topologically required. We evidence rich behaviors, including the possibility of reversible colloidal aggregation and dispersion. Complex anisotropic self-assembled phases might be formed in dense suspensions.Comment: 4 pages, 6 figure

    Generation of Multiple Circular Walls on a Thin Film of Nematic Liquid Crystal by Laser Scanning

    Full text link
    We found that multiple circular walls (MCW) can be generated on a thin film of a nematic liquid crystal through a spiral scanning of a focused IR laser. The ratios between radii of adjacent rings of MCW were almost constant. These constant ratios can be explained theoretically by minimization of the Frank elastic free energy of nematic medium. The director field on a MCW exhibits chiral symmetry-breaking although the elastic free energies of both chiral MCWs are degenerated, i.e., the director on a MCW can rotate clockwise or counterclockwise along the radial direction.Comment: 10 pages, 5 figures. Submitted to Chemical Physics Letters 2nd Editio

    Belief propagation algorithm for computing correlation functions in finite-temperature quantum many-body systems on loopy graphs

    Get PDF
    Belief propagation -- a powerful heuristic method to solve inference problems involving a large number of random variables -- was recently generalized to quantum theory. Like its classical counterpart, this algorithm is exact on trees when the appropriate independence conditions are met and is expected to provide reliable approximations when operated on loopy graphs. In this paper, we benchmark the performances of loopy quantum belief propagation (QBP) in the context of finite-tempereture quantum many-body physics. Our results indicate that QBP provides reliable estimates of the high-temperature correlation function when the typical loop size in the graph is large. As such, it is suitable e.g. for the study of quantum spin glasses on Bethe lattices and the decoding of sparse quantum error correction codes.Comment: 5 pages, 4 figure

    Optimized coupling of cold atoms into a fiber using a blue-detuned hollow-beam funnel

    Full text link
    We theoretically investigate the process of coupling cold atoms into the core of a hollow-core photonic-crystal optical fiber using a blue-detuned Laguerre-Gaussian beam. In contrast to the use of a red-detuned Gaussian beam to couple the atoms, the blue-detuned hollow-beam can confine cold atoms to the darkest regions of the beam thereby minimizing shifts in the internal states and making the guide highly robust to heating effects. This single optical beam is used as both a funnel and guide to maximize the number of atoms into the fiber. In the proposed experiment, Rb atoms are loaded into a magneto-optical trap (MOT) above a vertically-oriented optical fiber. We observe a gravito-optical trapping effect for atoms with high orbital momentum around the trap axis, which prevents atoms from coupling to the fiber: these atoms lack the kinetic energy to escape the potential and are thus trapped in the laser funnel indefinitely. We find that by reducing the dipolar force to the point at which the trapping effect just vanishes, it is possible to optimize the coupling of atoms into the fiber. Our simulations predict that by using a low-power (2.5 mW) and far-detuned (300 GHz) Laguerre-Gaussian beam with a 20-{\mu}m radius core hollow-fiber it is possible to couple 11% of the atoms from a MOT 9 mm away from the fiber. When MOT is positioned further away, coupling efficiencies over 50% can be achieved with larger core fibers.Comment: 11 pages, 12 figures, 1 tabl

    Drag on particles in a nematic suspension by a moving nematic-isotropic interface

    Get PDF
    We report the first clear demonstration of drag on colloidal particles by a moving nematic-isotropic interface. The balance of forces explains our observation of periodic, strip-like structures that are produced by the movement of these particles

    Interaction and flocculation of spherical colloids wetted by a surface-induced corona of paranematic order

    Full text link
    Particles dispersed in a liquid crystal above the nematic-isotropic phase transition are wetted by a surface-induced corona of paranematic order. Such coronas give rise to pronounced two-particle interactions. In this article, we report details on the analytical and numerical study of these interactions published recently [Phys. Rev. Lett. 86, 3915 (2001)]. We especially demonstrate how for large particle separations the asymptotic form of a Yukawa potential arises. We show that the Yukawa potential is a surprisingly good description for the two-particle interactions down to distances of the order of the nematic coherence length. Based on this fact, we extend earlier studies on a temperature induced flocculation transition in electrostatically stabilized colloidal dispersions [Phys. Rev. E 61, 2831 (2000)]. We employ the Yukawa potential to establish a flocculation diagram for a much larger range of the electrostatic parameters, namely the surface charge density and the Debye screening length. As a new feature, a kinetically stabilized dispersion close to the nematic-isotropic phase transition is found.Comment: Revtex v4.0, 16 pages, 12 Postscript figures. Accepted for publication in Phys. Rev.

    A comparison of the Bravyi-Kitaev and Jordan-Wigner transformations for the quantum simulation of quantum chemistry

    Get PDF
    The ability to perform classically intractable electronic structure calculations is often cited as one of the principal applications of quantum computing. A great deal of theoretical algorithmic development has been performed in support of this goal. Most techniques require a scheme for mapping electronic states and operations to states of and operations upon qubits. The two most commonly used techniques for this are the Jordan-Wigner transformation and the Bravyi-Kitaev transformation. However, comparisons of these schemes have previously been limited to individual small molecules. In this paper we discuss resource implications for the use of the Bravyi-Kitaev mapping scheme, specifically with regard to the number of quantum gates required for simulation. We consider both small systems which may be simulatable on near-future quantum devices, and systems sufficiently large for classical simulation to be intractable. We use 86 molecular systems to demonstrate that the use of the Bravyi-Kitaev transformation is typically at least approximately as efficient as the canonical Jordan-Wigner transformation, and results in substantially reduced gate count estimates when performing limited circuit optimisations.Comment: 46 pages, 11 figure

    Simulating Particle Dispersions in Nematic Liquid-Crystal Solvents

    Full text link
    A new method is presented for mesoscopic simulations of particle dispersions in nematic liquid crystal solvents. It allows efficient first-principle simulations of the dispersions involving many particles with many-body interactions mediated by the solvents. A simple demonstration is shown for the aggregation process of a two dimentional dispersion.Comment: 5 pages, 5 figure

    Liquid Crystals in Electric Field

    Full text link
    We present a general theory of electric field effects in liquid crystals where the dielectric tensor depends on the orientation order. As applications, we examine (i) the director fluctuations in nematic states in electric field for arbitrary strength of the dielectric anisotropy and (ii) deformation of the nematic order around a charged particle. Some predictions are made for these effects.Comment: 9pages, 2figure
    • …
    corecore