27,262 research outputs found

    Interplay between elastic fields due to gravity and a partial dislocation for a hard-sphere crystal coherently grown under gravity: driving force for defect disappearance

    Full text link
    We previously observed that an intrinsic staking fault shrunk through a glide of a Shockley partial dislocation terminating its lower end in a hard-sphere crystal under gravity coherently grown in by Monte Carlo simulations [Mori et al., Molec. Phys. 105, 1377 (2007)]; it was an answer to a one-decade long standing question why the stacking disorder in colloidal crystals reduced under gravity [Zhu et al., Nature 387, 883 (1997)]. Here, we present an elastic energy calculation; in addition to the self-energy of the partial dislocation [Mori et al., Prog. Theor. Phys. Suppl. 178, 33 (2009)] we calculate the cross-coupling term between elastic field due to gravity and that due to a Shockley partial dislocation. The cross term is a increasing function of the linear dimension R over which the elastic field expands, showing that a driving force arises for the partial dislocation moving toward the upper boundary of a grain.Comment: 8pages, 4figures, to be published in Molecular Physic

    Multi-Orbital Molecular Compound (TTM-TTP)I_3: Effective Model and Fragment Decomposition

    Full text link
    The electronic structure of the molecular compound (TTM-TTP)I_3, which exhibits a peculiar intra-molecular charge ordering, has been studied using multi-configuration ab initio calculations. First we derive an effective Hubbard-type model based on the molecular orbitals (MOs) of TTM-TTP; we set up a two-orbital Hamiltonian for the two MOs near the Fermi energy and determine its full parameters: the transfer integrals, the Coulomb and exchange interactions. The tight-binding band structure obtained from these transfer integrals is consistent with the result of the direct band calculation based on density functional theory. Then, by decomposing the frontier MOs into two parts, i.e., fragments, we find that the stacked TTM-TTP molecules can be described by a two-leg ladder model, while the inter-fragment Coulomb energies are scaled to the inverse of their distances. This result indicates that the fragment picture that we proposed earlier [M.-L. Bonnet et al.: J. Chem. Phys. 132 (2010) 214705] successfully describes the low-energy properties of this compound.Comment: 5 pages, 4 figures, published versio

    CDM, Feedback and the Hubble Sequence

    Get PDF
    We have performed TreeSPH simulations of galaxy formation in a standard LCDM cosmology, including effects of star formation, energetic stellar feedback processes and a meta-galactic UV field, and obtain a mix of disk, lenticular and elliptical galaxies. The disk galaxies are deficient in angular momentum by only about a factor of two compared to observed disk galaxies. The stellar disks have approximately exponential surface density profiles, and those of the bulges range from exponential to r^{1/4}, as observed. The bulge-to-disk ratios of the disk galaxies are consistent with observations and likewise are their integrated B-V colours, which have been calculated using stellar population synthesis techniques. Furthermore, we can match the observed I-band Tully-Fisher (TF) relation, provided that the mass-to-light ratio of disk galaxies, (M/L_I), is about 0.8. The ellipticals and lenticulars have approximately r^{1/4} stellar surface density profiles, are dominated by non-disklike kinematics and flattened due to non-isotropic stellar velocity distributions, again consistent with observations.Comment: 6 pages, incl. 4 figs. To appear in the proceedings of the EuroConference "The Evolution of Galaxies: II - Basic Building Blocks", Ile de La Reunion (France), 16-21 October 2001 (Slightly updated version). A much more comprehensive paper about this work with links to pictures of some of the galaxies can be found at http://babbage.sissa.it/abs/astro-ph/020436

    Coexistence of superconductivity and antiferromagnetism in self-doped bilayer t-t'-J model

    Full text link
    A self-doped bilayer t-t'-J model of an electron- and a hole-doped planes is studied by the slave-boson mean-field theory. A hopping integral between the differently doped planes, which are generated by a site potential, are renormalized by the electron-electron correlation. We find coexistent phases of antiferromagnetic (AFM) and superconducting orders, although the magnitudes of order parameters become more dissimilar in the bilayer away from half-filling. Fermi surfaces (FS's) with the AFM order show two pockets around the nodal and the anti-nodal regions. These results look like a composite of electron- and hole-doped FS's. In the nodal direction, the FS splitting is absent even in the bilayer system, since one band is flat due to the AFM order.Comment: 6 pages, 4 figure

    Novel Charge Order and Superconductivity in Two-Dimensional Frustrated Lattice at Quarter Filling

    Full text link
    Motivated by the various physical properties observed in θ\theta-(BEDT-TTF)2_2X, we study the ground state of extended Hubbard model on two-dimensional anisotropic triangular lattice at 1/4-filling with variational Monte Carlo method. It is shown that the nearest-neighbor Coulomb interaction enhances the charge fluctuation and it induces the anomalous state such as charge-ordered metallic state and the triplet next-nearest-neighbor ff-wave superconductivity. We discuss the relation to the real materials and propose the unified view of the family of θ\theta-(BEDT-TTF)2_2X.Comment: 4 pages, 5 figure

    Correlated Binomial Models and Correlation Structures

    Full text link
    We discuss a general method to construct correlated binomial distributions by imposing several consistent relations on the joint probability function. We obtain self-consistency relations for the conditional correlations and conditional probabilities. The beta-binomial distribution is derived by a strong symmetric assumption on the conditional correlations. Our derivation clarifies the 'correlation' structure of the beta-binomial distribution. It is also possible to study the correlation structures of other probability distributions of exchangeable (homogeneous) correlated Bernoulli random variables. We study some distribution functions and discuss their behaviors in terms of their correlation structures.Comment: 12 pages, 7 figure

    Microcanonical Analysis of Exactness of the Mean-Field Theory in Long-Range Interacting Systems

    Full text link
    Classical spin systems with nonadditive long-range interactions are studied in the microcanonical ensemble. It is expected that the entropy of such a system is identical to that of the corresponding mean-field model, which is called "exactness of the mean-field theory". It is found out that this expectation is not necessarily true if the microcanonical ensemble is not equivalent to the canonical ensemble in the mean-field model. Moreover, necessary and sufficient conditions for exactness of the mean-field theory are obtained. These conditions are investigated for two concrete models, the \alpha-Potts model with annealed vacancies and the \alpha-Potts model with invisible states.Comment: 23 pages, to appear in J. Stat. Phy

    Radially Polarized, Half-Cycle, Attosecond Pulses from Laser Wakefields through Coherent Synchrotron Radiation

    Get PDF
    Attosecond bursts of coherent synchrotron-like radiation are found when driving ultrathin relativistic electron disks in a quasi-one-dimensional regime of wakefield acceleration, in which the laser waist is larger than the wake wavelength. The disks of overcritical density shrink radially due to the focusing wake fields, thus providing the transverse currents for the emission of an intense, radially polarized, half-cycle pulse of about 100 attoseconds in duration. The electromagnetic pulse first focuses to a peak intensity 10 times larger (7Ă—1020W/cm27\times10^{20}\rm W/cm^2) than the driving pulse and then emerges as a conical beam. Saturation of the emission amplitudes is derived analytically and in agreement with particle-in-cell simulation. By making use of gas targets instead of solids to form the ultrathin disks, the new scheme allows for high repetition rate required for applications.Comment: 5 pages, 4 figure
    • …
    corecore