4,093 research outputs found

    Determining the forsterite abundance of the dust around Asymptotic Giant Branch stars

    Get PDF
    Aims. We present a diagnostic tool to determine the abundance of the crystalline silicate forsterite in AGB stars surrounded by a thick shell of silicate dust. Using six infrared spectra of high mass-loss oxygen rich AGB stars we obtain the forsterite abundance of their dust shells. Methods. We use a monte carlo radiative transfer code to calculate infrared spectra of dust enshrouded AGB stars. We vary the dust composition, mass-loss rate and outer radius. We focus on the strength of the 11.3 and the 33.6 \mu m forsterite bands, that probe the most recent (11.3 \mu m) and older (33.6 \mu m) mass-loss history of the star. Simple diagnostic diagrams are derived, allowing direct comparison to observed band strengths. Results. Our analysis shows that the 11.3 \mu m forsterite band is a robust indicator for the forsterite abundance of the current mass-loss period for AGB stars with an optically thick dust shell. The 33.6 \mu m band of forsterite is sensitive to changes in the density and the geometry of the emitting dust shell, and so a less robust indicator. Applying our method to six high mass-loss rate AGB stars shows that AGB stars can have forsterite abundances of 12% by mass and higher, which is more than the previously found maximum abundance of 5%.Comment: Accepted for publication in A&

    Dust in the wind: Crystalline silicates, corundum and periclase in PG 2112+059

    Full text link
    We have determined the mineralogical composition of dust in the Broad Absorption Line (BAL) quasar PG 2112+059 using mid-infrared spectroscopy obtained with the Spitzer Space Telescope. From spectral fitting of the solid state features, we find evidence for Mg-rich amorphous silicates with olivine stoichiometry, as well as the first detection of corundum (Al_2O_3) and periclase (MgO) in quasars. This mixed composition provides the first direct evidence for a clumpy density structure of the grain forming region. The silicates in total encompass 56.5% of the identified dust mass, while corundum takes up 38 wt.%. Depending on the choice of continuum, a range of mass fractions is observed for periclase ranging from 2.7% in the most conservative case to 9% in a less constrained continuum. In addition, we identify a feature at 11.2 micron as the crystalline silicate forsterite, with only a minor contribution from polycyclic aromatic hydrocarbons. The 5% crystalline silicate fraction requires high temperatures such as those found in the immediate quasar environment in order to counteract rapid destruction from cosmic rays.Comment: 2 figure

    Stochastic Light-Cone CTMRG: a new DMRG approach to stochastic models

    Full text link
    We develop a new variant of the recently introduced stochastic transfer-matrix DMRG which we call stochastic light-cone corner-transfer-matrix DMRG (LCTMRG). It is a numerical method to compute dynamic properties of one-dimensional stochastic processes. As suggested by its name, the LCTMRG is a modification of the corner-transfer-matrix DMRG (CTMRG), adjusted by an additional causality argument. As an example, two reaction-diffusion models, the diffusion-annihilation process and the branch-fusion process, are studied and compared to exact data and Monte-Carlo simulations to estimate the capability and accuracy of the new method. The number of possible Trotter steps of more than 10^5 shows a considerable improvement to the old stochastic TMRG algorithm.Comment: 15 pages, uses IOP styl
    • …
    corecore