3,207 research outputs found

    Neutron activation analysis traces copper artifacts to geographical point of origin

    Get PDF
    Impurities remaining in the metallic copper are identified and quantified by spectrographic and neutron activation analysis. Determination of the type of ore used for the copper artifact places the geographic point of origin of the artifact

    Speeding Up Computer Simulations: The Transition Observable Method

    Full text link
    A method is presented which allows for a tremendous speed-up of computer simulations of statistical systems by orders of magnitude. This speed-up is achieved by means of a new observable, while the algorithm of the simulation remains unchanged.Comment: 20 pages, 6 figures Submitted to Phys.Rev.E (August 1999) Replacement due to some minor change

    Phase transitions and configuration space topology

    Full text link
    Equilibrium phase transitions may be defined as nonanalytic points of thermodynamic functions, e.g., of the canonical free energy. Given a certain physical system, it is of interest to understand which properties of the system account for the presence of a phase transition, and an understanding of these properties may lead to a deeper understanding of the physical phenomenon. One possible approach of this issue, reviewed and discussed in the present paper, is the study of topology changes in configuration space which, remarkably, are found to be related to equilibrium phase transitions in classical statistical mechanical systems. For the study of configuration space topology, one considers the subsets M_v, consisting of all points from configuration space with a potential energy per particle equal to or less than a given v. For finite systems, topology changes of M_v are intimately related to nonanalytic points of the microcanonical entropy (which, as a surprise to many, do exist). In the thermodynamic limit, a more complex relation between nonanalytic points of thermodynamic functions (i.e., phase transitions) and topology changes is observed. For some class of short-range systems, a topology change of the M_v at v=v_t was proved to be necessary for a phase transition to take place at a potential energy v_t. In contrast, phase transitions in systems with long-range interactions or in systems with non-confining potentials need not be accompanied by such a topology change. Instead, for such systems the nonanalytic point in a thermodynamic function is found to have some maximization procedure at its origin. These results may foster insight into the mechanisms which lead to the occurrence of a phase transition, and thus may help to explore the origin of this physical phenomenon.Comment: 22 pages, 6 figure

    The close T Tauri binary system V4046 Sgr: Rotationally modulated X-ray emission from accretion shocks

    Get PDF
    We report initial results from a quasi-simultaneous X-ray/optical observing campaign targeting V4046 Sgr, a close, synchronous-rotating classical T Tauri star (CTTS) binary in which both components are actively accreting. V4046 Sgr is a strong X-ray source, with the X-rays mainly arising from high-density (n_e ~ 10^(11-12) cm^(-3)) plasma at temperatures of 3-4 MK. Our multiwavelength campaign aims to simultaneously constrain the properties of this X-ray emitting plasma, the large scale magnetic field, and the accretion geometry. In this paper, we present key results obtained via time-resolved X-ray grating spectra, gathered in a 360 ks XMM-Newton observation that covered 2.2 system rotations. We find that the emission lines produced by this high-density plasma display periodic flux variations with a measured period, 1.22+/-0.01 d, that is precisely half that of the binary star system (2.42 d). The observed rotational modulation can be explained assuming that the high-density plasma occupies small portions of the stellar surfaces, corotating with the stars, and that the high-density plasma is not azimuthally symmetrically distributed with respect to the rotational axis of each star. These results strongly support models in which high-density, X-ray-emitting CTTS plasma is material heated in accretion shocks, located at the base of accretion flows tied to the system by magnetic field lines.Comment: paper accepted by Ap
    corecore