1,560 research outputs found

    Sibling Competition and Conspicuousness of Nestling Gapes in Altricial Birds: A Comparative Study

    Get PDF
    Background: Nestlings of altricial birds capture parents ’ attention through conspicuous visual displays, including exposure of their gape coloration which informs parents about their level of need, competitive ability or health; information that parents use for deciding food allocation among their offspring. Thus, because nestlings compete with nest mates for parental care, nestling conspicuousness is expected to increase with level of sibling competition along bird phylogeny. Methodology/Principal Findings: We test this prediction by jointly using information of brood reduction, clutch size and duration of nestling period as proxies for intensity of sibling competition, and visual models that assess detectability of nestlings by adult birds. As predicted, we found a positive association between nestling conspicuousness and intensity of brood reduction, while clutch size and duration of nestling period did not enter in the best models. Level of brood reduction was positively related with the achromatic component of nestling conspicuousness and body mass was negatively related with the chromatic component. Conclusions: These associations are in agreement with the hypothesis that sibling competition for parental attention has driven the evolution of visual nestling conspicuousness in a context of parent-offspring communication in altricial birds

    Multiphase PC/PL Relations: Comparison between Theory and observations

    Full text link
    Cepheids are fundamental objects astrophysically in that they hold the key to a CMB independent estimate of Hubble's constant. A number of researchers have pointed out the possibilities of breaking degeneracies between Omega_Matter and H0 if there is a CMB independent distance scale accurate to a few percent (Hu 2005). Current uncertainties in the distance scale are about 10% but future observations, with, for example, the JWST, will be capable of estimating H0 to within a few percent. A crucial step in this process is the Cepheid PL relation. Recent evidence has emerged that the PL relation, at least in optical bands, is nonlinear and that neglect of such a nonlinearity can lead to errors in estimating H0 of up to 2 percent. Hence it is important to critically examine this possible nonlinearity both observationally and theoretically. Existing PC/PL relations rely exclusively on evaluating these relations at mean light. However, since such relations are the average of relations at different phases. Here we report on recent attempts to compare theory and observation in the multiphase PC/PL planes. We construct state of the art Cepheid pulsations models appropriate for the LMC/Galaxy and compare the resulting PC/PL relations as a function of phase with observations. For the LMC, the (V-I) period-color relation at minimum light can have quite a narrow dispersion (0.2-0.3 mags) and thus could be useful in placing constraints on models. At longer periods, the models predict significantly redder (by about 0.2-0.3 mags) V-I colors. We discuss possible reasons for this and also compare PL relations at various phases of pulsation and find clear evidence in both theory and observations for a nonlinear PL relation.Comment: 5 pages, 8 figures, proceeding for "Stellar Pulsation: Challenges for Theory and Observation", Santa Fe 200

    Observation of Ising-like critical fluctuations in frustrated Josephson junction arrays with modulated coupling energies

    Full text link
    We report the results of ac sheet conductance measurements performed on fully frustrated square arrays of Josephson junctions whose coupling energy is periodically modulated in one of the principal lattice directions. Such systems are predicted to exhibit two distinct transitions: a low-temperature Ising-like transition triggered by the proliferation of domain walls and a high-temperature transition driven by the vortex unbinding mechanism of the Beresinskii-Kosterlitz-Thouless (BKT) theory. Both the superfluid and dissipative components of the conductance are found to exhibit features which unambiguously demonstrate the existence of a double transition whose properties are consistent with the Ising-BKT scenario.Comment: To be published in Physica C (Proceedings of the 2nd European Conference in School Format 'Vortex Matter in Superconductors'

    How Sandcastles Fall

    Full text link
    Capillary forces significantly affect the stability of sandpiles. We analyze the stability of sandpiles with such forces, and find that the critical angle is unchanged in the limit of an infinitely large system; however, this angle is increased for finite-sized systems. The failure occurs in the bulk of the sandpile rather than at the surface. This is related to a standard result in soil mechanics. The increase in the critical angle is determined by the surface roughness of the particles, and exhibits three regimes as a function of the added-fluid volume. Our theory is in qualitative agreement with the recent experimental results of Hornbaker et al., although not with the interpretation they make of these results.Comment: 4 pages, 2 figures, revte

    Exact Multifractal Exponents for Two-Dimensional Percolation

    Full text link
    The harmonic measure (or diffusion field or electrostatic potential) near a percolation cluster in two dimensions is considered. Its moments, summed over the accessible external hull, exhibit a multifractal spectrum, which I calculate exactly. The generalized dimensions D(n) as well as the MF function f(alpha) are derived from generalized conformal invariance, and are shown to be identical to those of the harmonic measure on 2D random walks or self-avoiding walks. An exact application to the anomalous impedance of a rough percolative electrode is given. The numerical checks are excellent. Another set of exact and universal multifractal exponents is obtained for n independent self-avoiding walks anchored at the boundary of a percolation cluster. These exponents describe the multifractal scaling behavior of the average nth moment of the probabity for a SAW to escape from the random fractal boundary of a percolation cluster in two dimensions.Comment: 5 pages, 3 figures (in colors

    Phase Coexistence of a Stockmayer Fluid in an Applied Field

    Full text link
    We examine two aspects of Stockmayer fluids which consists of point dipoles that additionally interact via an attractive Lennard-Jones potential. We perform Monte Carlo simulations to examine the effect of an applied field on the liquid-gas phase coexistence and show that a magnetic fluid phase does exist in the absence of an applied field. As part of the search for the magnetic fluid phase, we perform Gibbs ensemble simulations to determine phase coexistence curves at large dipole moments, μ\mu. The critical temperature is found to depend linearly on μ2\mu^2 for intermediate values of μ\mu beyond the initial nonlinear behavior near μ=0\mu=0 and less than the μ\mu where no liquid-gas phase coexistence has been found. For phase coexistence in an applied field, the critical temperatures as a function of the applied field for two different μ\mu are mapped onto a single curve. The critical densities hardly change as a function of applied field. We also verify that in an applied field the liquid droplets within the two phase coexistence region become elongated in the direction of the field.Comment: 23 pages, ReVTeX, 7 figure

    Conformal Mapping on Rough Boundaries I: Applications to harmonic problems

    Full text link
    The aim of this study is to analyze the properties of harmonic fields in the vicinity of rough boundaries where either a constant potential or a zero flux is imposed, while a constant field is prescribed at an infinite distance from this boundary. We introduce a conformal mapping technique that is tailored to this problem in two dimensions. An efficient algorithm is introduced to compute the conformal map for arbitrarily chosen boundaries. Harmonic fields can then simply be read from the conformal map. We discuss applications to "equivalent" smooth interfaces. We study the correlations between the topography and the field at the surface. Finally we apply the conformal map to the computation of inhomogeneous harmonic fields such as the derivation of Green function for localized flux on the surface of a rough boundary

    Two-Dimensional Copolymers and Exact Conformal Multifractality

    Full text link
    We consider in two dimensions the most general star-shaped copolymer, mixing random (RW) or self-avoiding walks (SAW) with specific interactions thereof. Its exact bulk or boundary conformal scaling dimensions in the plane are all derived from an algebraic structure existing on a random lattice (2D quantum gravity). The multifractal dimensions of the harmonic measure of a 2D RW or SAW are conformal dimensions of certain star copolymers, here calculated exactly as non rational algebraic numbers. The associated multifractal function f(alpha) are found to be identical for a random walk or a SAW in 2D. These are the first examples of exact conformal multifractality in two dimensions.Comment: 4 pages, 2 figures, revtex, to appear in Phys. Rev. Lett., January 199
    • …
    corecore