5 research outputs found

    Emissions of trace gases from Australian temperate forest fires: emission factors and dependence on modified combustion efficiency

    Get PDF
    We characterised trace gas emissions from Australian temperate forest fires through a mixture of open-path Fourier transform infrared (OP-FTIR) measurements and selective ion flow tube mass spectrometry (SIFT-MS) and White cell FTIR analysis of grab samples. We report emission factors for a total of 25 trace gas species measured in smoke from nine prescribed fires. We find significant dependence on modified combustion efficiency (MCE) for some species, although regional differences indicate that the use of MCE as a proxy may be limited. We also find that the fire-integrated MCE values derived from our in situ on-the-ground open-path measurements are not significantly different from those reported for airborne measurements of smoke from fires in the same ecosystem. We then compare our average emission factors to those measured for temperate forest fires elsewhere (North America) and for fires in another dominant Australian ecosystem (savanna) and find significant differences in both cases. Indeed, we find that although the emission factors of some species agree within 20 %, including those of hydrogen cyanide, ethene, methanol, formaldehyde and 1,3-butadiene, others, such as acetic acid, ethanol, monoterpenes, ammonia, acetonitrile and pyrrole, differ by a factor of 2 or more. This indicates that the use of ecosystem-specific emission factors is warranted for applications involving emissions from Australian forest fires

    Investigation of mercury emissions from burning of Australian eucalypt forest surface fuels using a combustion wind tunnel and field observations

    Full text link
    © 2018 Environmental cycling of the toxic metal mercury (Hg) is ubiquitous, and still not completely understood. Volatilisation and emission of mercury from vegetation, litter and soil during burning represents a significant return pathway for previously-deposited atmospheric mercury. Rates of such emission vary widely across ecosystems as they are dependent on species-specific uptake of atmospheric mercury as well as fire return frequencies. Wildfire burning in Australia is currently thought to contribute between 1 and 5% of the global total of mercury emissions, yet no modelling efforts to date have utilised local mercury emission factors (mass of emitted mercury per mass of dry fuel) or local mercury emission ratios (ratio of emitted mercury to another emitted species, typically carbon monoxide). Here we present laboratory and field investigations into mercury emission from burning of surface fuels in dry sclerophyll forests, native to the temperate south-eastern region of Australia. From laboratory data we found that fire behaviour — in particular combustion phase — has a large influence on mercury emission and hence emission ratios. Further, emission of mercury was predominantly in gaseous form with particulate-bound mercury representing <1% of total mercury emission. Importantly, emission factors and emission ratios with respect to carbon monoxide and carbon dioxide, from both laboratory and field data all show that gaseous mercury emission from biomass burning in Australian dry sclerophyll forests is currently overestimated by around 60%. Based on these results, we recommend a mercury emission factor of 28.7 ± 8.1 ÎŒg Hg kg−1 dry fuel, and emission ratio of gaseous elemental mercury relative to carbon monoxide of 0.58 ± 0.01 × 10−7, for estimation of mercury release from the combustion of Australian dry sclerophyll litter

    The Unmanned Systems Research Laboratory (USRL): A New Facility for UAV-Based Atmospheric Observations

    No full text
    The Unmanned Systems Research Laboratory (USRL) of the Cyprus Institute is a new mobile exploratory platform of the EU Research Infrastructure Aerosol, Clouds and Trace Gases Research InfraStructure (ACTRIS). USRL offers exclusive Unmanned Aerial Vehicle (UAV)-sensor solutions that can be deployed anywhere in Europe and beyond, e.g., during intensive field campaigns through a transnational access scheme in compliance with the drone regulation set by the European Union Aviation Safety Agency (EASA) for the research, innovation, and training. UAV sensor systems play a growing role in the portfolio of Earth observation systems. They can provide cost-effective, spatial in-situ atmospheric observations which are complementary to stationary observation networks. They also have strong potential for calibrating and validating remote-sensing sensors and retrieval algorithms, mapping close-to-the-ground emission point sources and dispersion plumes, and evaluating the performance of atmospheric models. They can provide unique information relevant to the short- and long-range transport of gas and aerosol pollutants, radiative forcing, cloud properties, emission factors and a variety of atmospheric parameters. Since its establishment in 2015, USRL is participating in major international research projects dedicated to (1) the better understanding of aerosol-cloud interactions, (2) the profiling of aerosol optical properties in different atmospheric environments, (3) the vertical distribution of air pollutants in and above the planetary boundary layer, (4) the validation of Aeolus satellite dust products by utilizing novel UAV-balloon-sensor systems, and (5) the chemical characterization of ship and stack emissions. A comprehensive overview of the new UAV-sensor systems developed by USRL and their field deployments is presented here. This paper aims to illustrate the strong scientific potential of UAV-borne measurements in the atmospheric sciences and the need for their integration in Earth observation networks

    Biomass burning emissions in north Australia during the early dry season: An overview of the 2014 SAFIRED campaign

    Get PDF
    © 2017 Author(s). The SAFIRED (Savannah Fires in the Early Dry Season) campaign took place from 29 May until 30 June 2014 at the Australian Tropical Atmospheric Research Station (ATARS) in the Northern Territory, Australia. The purpose of this campaign was to investigate emissions from fires in the early dry season in northern Australia. Measurements were made of biomass burning aerosols, volatile organic compounds, polycyclic aromatic carbons, greenhouse gases, radon, speciated atmospheric mercury and trace metals. Aspects of the biomass burning aerosol emissions investigated included; emission factors of various species, physical and chemical aerosol properties, aerosol aging, micronutrient supply to the ocean, nucleation, and aerosol water uptake. Over the course of the month-long campaign, biomass burning signals were prevalent and emissions from several large single burning events were observed at ATARS.&lt;br&gt;&lt;br&gt;Biomass burning emissions dominated the gas and aerosol concentrations in this region. Dry season fires are extremely frequent and widespread across the northern region of Australia, which suggests that the measured aerosol and gaseous emissions at ATARS are likely representative of signals across the entire region of north Australia. Air mass forward trajectories show that these biomass burning emissions are carried north-west over the Timor Sea and could influence the atmosphere over Indonesia and the tropical atmosphere over the Indian Ocean. Here we present characteristics of the biomass burning observed at the sampling site and provide an overview of the more specific outcomes of the SAFIRED campaign
    corecore