3,488 research outputs found
Model Data Fusion: developing Bayesian inversion to constrain equilibrium and mode structure
Recently, a new probabilistic "data fusion" framework based on Bayesian
principles has been developed on JET and W7-AS. The Bayesian analysis framework
folds in uncertainties and inter-dependencies in the diagnostic data and signal
forward-models, together with prior knowledge of the state of the plasma, to
yield predictions of internal magnetic structure. A feature of the framework,
known as MINERVA (J. Svensson, A. Werner, Plasma Physics and Controlled Fusion
50, 085022, 2008), is the inference of magnetic flux surfaces without the use
of a force balance model. We discuss results from a new project to develop
Bayesian inversion tools that aim to (1) distinguish between competing
equilibrium theories, which capture different physics, using the MAST spherical
tokamak; and (2) test the predictions of MHD theory, particularly mode
structure, using the H-1 Heliac.Comment: submitted to Journal of Plasma Fusion Research 10/11/200
A comparison of incompressible limits for resistive plasmas
The constraint of incompressibility is often used to simplify the
magnetohydrodynamic (MHD) description of linearized plasma dynamics because it
does not affect the ideal MHD marginal stability point. In this paper two
methods for introducing incompressibility are compared in a cylindrical plasma
model: In the first method, the limit is taken, where
is the ratio of specific heats; in the second, an anisotropic mass
tensor is used, with the component parallel to the magnetic
field taken to vanish, . Use of resistive MHD reveals
the nature of these two limits because the Alfv\'en and slow magnetosonic
continua of ideal MHD are converted to point spectra and moved into the complex
plane. Both limits profoundly change the slow-magnetosonic spectrum, but only
the second limit faithfully reproduces the resistive Alfv\'en spectrum and its
wavemodes. In ideal MHD, the slow magnetosonic continuum degenerates to the
Alfv\'en continuum in the first method, while it is moved to infinity by the
second. The degeneracy in the first is broken by finite resistivity. For
numerical and semi-analytical study of these models, we choose plasma
equilibria which cast light on puzzling aspects of results found in earlier
literature.Comment: 14 pages, 10 figure
Strong "quantum" chaos in the global ballooning mode spectrum of three-dimensional plasmas
The spectrum of ideal magnetohydrodynamic (MHD) pressure-driven (ballooning)
modes in strongly nonaxisymmetric toroidal systems is difficult to analyze
numerically owing to the singular nature of ideal MHD caused by lack of an
inherent scale length. In this paper, ideal MHD is regularized by using a
-space cutoff, making the ray tracing for the WKB ballooning formalism a
chaotic Hamiltonian billiard problem. The minimum width of the toroidal Fourier
spectrum needed for resolving toroidally localized ballooning modes with a
global eigenvalue code is estimated from the Weyl formula. This
phase-space-volume estimation method is applied to two stellarator cases.Comment: 4 pages typeset, including 2 figures. Paper accepted for publication
in Phys. Rev. Letter
Lattice-gas model for alkali-metal fullerides: face-centered-cubic structure
A lattice-gas model is suggested for describing the ordering phenomena in
alkali-metal fullerides of face-centered-cubic structure assuming the electric
charge of alkali ions residing in either octahedral or tetrahedral interstitial
sites is completely screened by the first-neighbor C_60 molecules. This
approximation allows us to derive an effective ion-ion interaction. The van der
Waals interaction between the ion and C_60 molecule is characterized by
introducing an additional energy at the tetrahedral sites. This model is
investigated by using a three-sublattice mean-field approximation and a simple
cluster-variation method. The analysis shows a large variety of phase diagrams
when changing the site energy parameter.Comment: 10 twocolumn pages (REVTEX) including 12 PS figure
Achieving equal standards in medical student education: is a national exit examination the answer?
The document attached has been archived with permission from the editor of the Medical Journal of Australia. An external link to the publisher’s copy is included.Although it is commonly assumed that the quality of medical school education in Australia is uniformly high, there is no national process for assessing its outcomes. There is substantial variability in the content of medical school curricula, and the process of curriculum change is becoming more challenging because of intense competition for time and space in the course. A national exit examination could provide a uniform standard of assessment for all medical school graduates in Australia, as well as foreign graduates applying to work in Australia. Such an examination could assess medical school outcomes, monitor the effects of curriculum change, and provide a benchmark for new medical schools that would help medical curricula evolve to better meet society’s needs.Bogda Koczwara, Martin H N Tattersall, Michael B Barton, Brendon J Coventry, Joanna M Dewar, Jeremy L Millar, Ian N Olver, Max A Schwarz, Darren L Starmer, David R Turner and Martin R Stockler, for the Cancer Council of Australia Oncology Education Committe
Anderson localization of ballooning modes, quantum chaos and the stability of compact quasiaxially symmetric stellarators
The radially local magnetohydrodynamic(MHD) ballooning stability of a compact, quasiaxially symmetric stellarator (QAS), is examined just above the ballooning beta limit with a method that can lead to estimates of global stability. Here MHDstability is analyzed through the calculation and examination of the ballooning modeeigenvalue isosurfaces in the 3-space (s,α,θk); s is the edge normalized toroidal flux, α is the field linevariable, and θk is the perpendicular wave vector or ballooning parameter. Broken symmetry, i.e., deviations from axisymmetry, in the stellarator magnetic field geometry causes localization of the ballooning mode eigenfunction, and gives rise to new types of nonsymmetric eigenvalue isosurfaces in both the stable and unstable spectrum. For eigenvalues far above the marginal point, isosurfaces are topologically spherical, indicative of strong “quantum chaos.” The complexity of QAS marginal isosurfaces suggests that finite Larmor radius stabilization estimates will be difficult and that fully three-dimensional, high-nMHD computations are required to predict the beta limit.Research supported by U.S. DOE Contract No. DEAC02-76CH0373.
John Canik held a U.S. DOE National
Undergraduate Fellowship at Princeton Plasma Physics
Laboratory, during the summer of 2000
Boosting Long-term Memory via Wakeful Rest: Intentional Rehearsal is not Necessary, Automatic Consolidation is Sufficient.
<div><p>People perform better on tests of delayed free recall if learning is followed immediately by a short wakeful rest than by a short period of sensory stimulation. Animal and human work suggests that wakeful resting provides optimal conditions for the consolidation of recently acquired memories. However, an alternative account cannot be ruled out, namely that wakeful resting provides optimal conditions for intentional rehearsal of recently acquired memories, thus driving superior memory. Here we utilised non-recallable words to examine whether wakeful rest boosts long-term memory, even when new memories could not be rehearsed intentionally during the wakeful rest delay. The probing of non-recallable words requires a recognition paradigm. Therefore, we first established, via Experiment 1, that the rest-induced boost in memory observed via free recall can be replicated in a recognition paradigm, using concrete nouns. In Experiment 2, participants heard 30 non-recallable non-words, presented as ‘foreign names in a bridge club abroad’ and then either rested wakefully or played a visual spot-the-difference game for 10 minutes. Retention was probed via recognition at two time points, 15 minutes and 7 days after presentation. As in Experiment 1, wakeful rest boosted recognition significantly, and this boost was maintained for at least 7 days. Our results indicate that the enhancement of memory via wakeful rest is <i>not</i> dependent upon intentional rehearsal of learned material during the rest period. We thus conclude that consolidation is <i>sufficient</i> for this rest-induced memory boost to emerge. We propose that wakeful resting allows for superior memory consolidation, resulting in stronger and/or more veridical representations of experienced events which can be detected via tests of free recall and recognition.</p></div
Nonequilibrium statistical mechanics of shear flow: invariant quantities and current relations
In modeling nonequilibrium systems one usually starts with a definition of
the microscopic dynamics, e.g., in terms of transition rates, and then derives
the resulting macroscopic behavior. We address the inverse question for a class
of steady state systems, namely complex fluids under continuous shear flow: how
does an externally imposed shear current affect the microscopic dynamics of the
fluid? The answer can be formulated in the form of invariant quantities, exact
relations for the transition rates in the nonequilibrium steady state, as
discussed in a recent letter [A. Baule and R. M. L. Evans, Phys. Rev. Lett.
101, 240601 (2008)]. Here, we present a more pedagogical account of the
invariant quantities and the theory underlying them, known as the
nonequilibrium counterpart to detailed balance (NCDB). Furthermore, we
investigate the relationship between the transition rates and the shear current
in the steady state. We show that a fluctuation relation of the
Gallavotti-Cohen type holds for systems satisfying NCDB.Comment: 24 pages, 11 figure
Nonlinear saturation of electrostatic waves: mobile ions modify trapping scaling
The amplitude equation for an unstable electrostatic wave in a multi-species
Vlasov plasma has been derived. The dynamics of the mode amplitude is
studied using an expansion in ; in particular, in the limit
, the singularities in the expansion coefficients are
analyzed to predict the asymptotic dependence of the electric field on the
linear growth rate . Generically , as
, but in the limit of infinite ion mass or for
instabilities in reflection-symmetric systems due to real eigenvalues the more
familiar trapping scaling is predicted.Comment: 13 pages (Latex/RevTex), 4 postscript encapsulated figures which are
included using the utility "uufiles". They should be automatically included
with the text when it is downloaded. Figures also available in hard copy from
the authors ([email protected]
- …