13,816 research outputs found

    The Mechanics of Malaria Parasite Invasion of the Human Erythrocyte - Towards a Reassessment of the Host Cell Contribution

    No full text
    Despite decades of research, we still know little about the mechanics of Plasmodium host cell invasion. Fundamentally, while the essential or non‐essential nature of different parasite proteins is becoming clearer, their actual function and how each comes together to govern invasion are poorly understood. Furthermore, in recent years an emerging world view is shifting focus away from the parasite actin–myosin motor being the sole force responsible for entry to an appreciation of host cell dynamics and forces and their contribution to the process. In this review, we discuss merozoite invasion of the erythrocyte, focusing on the complex set of pre‐invasion events and how these might prime the red cell to facilitate invasion. While traditionally parasite interactions at this stage have been viewed simplistically as mediating adhesion only, recent work makes it apparent that by interacting with a number of host receptors and signalling pathways, combined with secretion of parasite‐derived lipid material, that the merozoite may initiate cytoskeletal re‐arrangements and biophysical changes in the erythrocyte that greatly reduce energy barriers for entry. Seen in this light Plasmodium invasion may well turn out to be a balance between host and parasite forces, much like that of other pathogen infection mechanisms

    Virtual image out-the-window display system study. Volume 2 - Appendix

    Get PDF
    Virtual image out-the-window display system imaging techniques and simulation devices - appendices containing background materia

    Improving predictive power of physically based rainfall-induced shallow landslide models: a probabilistic approach

    Full text link
    Distributed models to forecast the spatial and temporal occurrence of rainfall-induced shallow landslides are based on deterministic laws. These models extend spatially the static stability models adopted in geotechnical engineering, and adopt an infinite-slope geometry to balance the resisting and the driving forces acting on the sliding mass. An infiltration model is used to determine how rainfall changes pore-water conditions, modulating the local stability/instability conditions. A problem with the operation of the existing models lays in the difficulty in obtaining accurate values for the several variables that describe the material properties of the slopes. The problem is particularly severe when the models are applied over large areas, for which sufficient information on the geotechnical and hydrological conditions of the slopes is not generally available. To help solve the problem, we propose a probabilistic Monte Carlo approach to the distributed modeling of rainfall-induced shallow landslides. For the purpose, we have modified the Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis (TRIGRS) code. The new code (TRIGRS-P) adopts a probabilistic approach to compute, on a cell-by-cell basis, transient pore-pressure changes and related changes in the factor of safety due to rainfall infiltration. Infiltration is modeled using analytical solutions of partial differential equations describing one-dimensional vertical flow in isotropic, homogeneous materials. Both saturated and unsaturated soil conditions can be considered. TRIGRS-P copes with the natural variability inherent to the mechanical and hydrological properties of the slope materials by allowing values of the TRIGRS model input parameters to be sampled randomly from a given probability distribution. [..]Comment: 25 pages, 14 figures, 9 tables. Revised version; accepted for publication in Geoscientific Model Development on 13 February 201

    Control of multiferroic domains by external electric fields in TbMnO3

    Full text link
    The control of multiferroic domains through external electric fields has been studied by dielectric measurements and by polarized neutron diffraction on single-crystalline TbMnO3_3. Full hysteresis cycles were recorded by varying an external field of the order of several kV/mm and by recording the chiral magnetic scattering as well as the charge in a sample capacitor. Both methods yield comparable coercive fields that increase upon cooling.Comment: 12 pages, 6 figure

    Quasars, their host galaxies, and their central black holes

    Full text link
    We present the final results from our deep HST imaging study of the hosts of radio-quiet quasars (RQQs), radio-loud quasars (RLQs) and radio galaxies (RGs). We describe new WFPC2 R-band observations for 14 objects and model these images in conjunction with the data already reported in McLure et al (1999). We find that spheroidal hosts become more prevalent with increasing nuclear luminosity such that, for nuclear luminosities M_V < -23.5, the hosts of both radio-loud and radio-quiet AGN are virtually all massive ellipticals. Moreover we demonstrate that the basic properties of these hosts are indistinguishable from those of quiescent, evolved, low-redshift ellipticals of comparable mass. This result kills any lingering notion that radio-loudness is determined by host-galaxy morphology, and also sets severe constraints on evolutionary schemes which attempt to link low-z ULIRGs with RQQs. Instead, we show that our results are as expected given the relationship between black-hole and spheroid mass established for nearby galaxies, and apply this relation to estimate the mass of the black hole in each object. The results agree very well with completely-independent estimates based on nuclear emission-line widths; all the quasars in our sample have M(bh) > 5 x 10^8 solar masses, while the radio-loud objects are confined to M(bh) > 10^9 solar masses. This apparent mass-threshold difference, which provides a natural explanation for why RQQs outnumber RLQs by a factor of 10, appears to reflect the existence of a minimum and maximum level of black-hole radio output which is a strong function of black-hole mass. Finally, we use our results to estimate the fraction of massive spheroids/black-holes which produce quasar-level activity. This fraction is \~0.1% at the present day, rising to > 10% at z = 2-3.Comment: Revised version accepted for publication in Monthly Notices of the Royal Astronomical Society. 46 pages, the final 19 of which comprise an Appendix. 15 figures in main text. A further 14 4-panel greyscale plots and 14 line plots which appear in the Appendix have been reproduced here with reduced quality due to space limitations. A full resolution copy of the manuscript can be obtained via ftp://ftp.roe.ac.uk/pub/jsd/dunlop2002.ps.g

    Gonadal hormones, but not sex, affect the acquisition and maintenance of a Go/No-Go odor discrimination task in mice

    Full text link
    In mice, olfaction is crucial for identifying social odors (pheromones) that signal the presence of suitable mates. We used a custom-built olfactometer and a thirst-motivated olfactory discrimination Go/No-Go (GNG) task to ask whether discrimination of volatile odors is sexually dimorphic and modulated in mice by adult sex hormones. Males and females gonadectomized prior to training failed to learn even the initial phase of the task, which involved nose poking at a port in one location obtaining water at an adjacent port. Gonadally intact males and females readily learned to seek water when male urine (S+) was present but not when female urine (S−) was present; they also learned the task when non-social odorants (amyl acetate, S+; peppermint, S−) were used. When mice were gonadectomized after training the ability of both sexes to discriminate urinary as well as non-social odors was reduced; however, after receiving testosterone propionate (castrated males) or estradiol benzoate (ovariectomized females), task performance was restored to pre-gonadectomy levels. There were no overall sex differences in performance across gonadal conditions in tests with either set of odors; however, ovariectomized females performed more poorly than castrated males in tests with non-social odors. Our results show that circulating sex hormones enable mice of both sexes to learn a GNG task and that gonadectomy reduces, while hormone replacement restores, their ability to discriminate between odors irrespective of the saliency of the odors used. Thus, gonadal hormones were essential for both learning and maintenance of task performance across sex and odor type.We thank David Giese for help in programming the apparatus used in GNG testing and Alberto Cruz-Martin for comments on an early version of the manuscript. This work was supported by NIDCD grant DC008962 to JAC. (DC008962 - NIDCD grant)Accepted manuscrip

    The Energy-Momentum tensor on SpincSpin^c manifolds

    Get PDF
    On SpincSpin^c manifolds, we study the Energy-Momentum tensor associated with a spinor field. First, we give a spinorial Gauss type formula for oriented hypersurfaces of a SpincSpin^c manifold. Using the notion of generalized cylinders, we derive the variationnal formula for the Dirac operator under metric deformation and point out that the Energy-Momentum tensor appears naturally as the second fundamental form of an isometric immersion. Finally, we show that generalized SpincSpin^c Killing spinors for Codazzi Energy-Momentum tensor are restrictions of parallel spinors.Comment: To appear in IJGMMP (International Journal of Geometric Methods in Modern Physics), 22 page

    Development of fuel cell electrodes, Electrode improvement and life testing, tasks 1 and 3 Final report, 30 Jun. 1966 - 30 Apr. 1968

    Get PDF
    Volt-ampere characteristics improvement and life testing of electrodes for hydrogen oxygen fuel cell
    • 

    corecore