119 research outputs found

    Four-photon orbital angular momentum entanglement

    Get PDF
    Quantum entanglement shared between more than two particles is essential to foundational questions in quantum mechanics, and upcoming quantum information technologies. So far, up to 14 two-dimensional qubits have been entangled, and an open question remains if one can also demonstrate entanglement of higher-dimensional discrete properties of more than two particles. A promising route is the use of the photon orbital angular momentum (OAM), which enables implementation of novel quantum information protocols, and the study of fundamentally new quantum states. To date, only two of such multidimensional particles have been entangled albeit with ever increasing dimensionality. Here we use pulsed spontaneous parametric downconversion (SPDC) to produce photon quadruplets that are entangled in their OAM, or transverse-mode degrees of freedom; and witness genuine multipartite Dicke-type entanglement. Apart from addressing foundational questions, this could find applications in quantum metrology, imaging, and secret sharing.Comment: 5 pages, 4 figure

    Photoluminescence quantum efficiency of dense silicon nanocrystal ensembles in SiO2

    Get PDF
    The photoluminescence decay characteristics of silicon nanocrystals in dense ensembles fabricated by ion implantation into silicon dioxide are observed to vary in proportion to the calculated local density of optical states. A comparison of the experimental 1/e photoluminescence decay rates to the expected spontaneous emission rate modification yields values for the internal quantum efficiency and the intrinsic radiative decay rate of silicon nanocrystals. A photoluminescence quantum efficiency as high as 59%±9% is found for nanocrystals emitting at 750 nm at low excitation power. A power dependent nonradiative decay mechanism reduces the quantum efficiency at high pump intensity

    Non-linear photonic crystals as a source of entangled photons

    Full text link
    Non-linear photonic crystals can be used to provide phase-matching for frequency conversion in optically isotropic materials. The phase-matching mechanism proposed here is a combination of form birefringence and phase velocity dispersion in a periodic structure. Since the phase-matching relies on the geometry of the photonic crystal, it becomes possible to use highly non-linear materials. This is illustrated considering a one-dimensional periodic Al0.4_{0.4}Ga0.6_{0.6}As / air structure for the generation of 1.5 μ\mum light. We show that phase-matching conditions used in schemes to create entangled photon pairs can be achieved in photonic crystals.Comment: 4 pages, 3 figure

    Photon statistics from coupled quantum dots

    Get PDF
    We present an optical study of closely-spaced self-assembled InAs/GaAs quantum dots. The energy spectrum and correlations between photons subsequently emitted from a single pair provide not only clear evidence of coupling between the quantum dots but also insight into the coupling mechanism. Our results are in agreement with recent theories predicting that tunneling is largely suppressed between nonidentical quantum dots and that the interaction is instead dominated by dipole-dipole coupling and phonon-assisted energy transfer processes.Comment: 4 pages, 4 figures, to appear in Phys. Re

    Design of NbN Superconducting Nanowire Single-Photon Detectors with Enhanced Infrared Detection Efficiency

    Get PDF
    We optimize the design of NbN nanowire superconducting single-photon detectors using the recently discovered position-dependent detection efficiency in these devices. This optimized design of meandering wire NbN detectors maximizes absorption at positions where photon detection is most efficient by altering the field distribution across the wire. In order to calculate the response of the detectors with different geometries, we use a monotonic local detection efficiency from a nanowire and optical absorption distribution via finite-difference-time-domain simulations. The calculations predict a trade-off between average absorption and absorption at the edge, leading to a predicted optimal wire width close to 100 nm for a 1550-nm wavelength, which drops to a 50-nm wire width for a 600-nm wavelength. The absorption at the edges can be enhanced by depositing a silicon nanowire on top of the superconducting nanowire, which improves both the total absorption efficiency and the internal detection efficiency of meandering wire structures. The proposed structure can be integrated in a relatively simple cavity structure to reach absorption efficiencies of 97% for perpendicular and 85% for parallel polarization

    Tomography and state reconstruction with superconducting single-photon detectors

    Get PDF
    We perform quantum state reconstruction of coherent and thermal states with a detector which has an enhanced multiphoton response. The detector is based on superconducting nanowires, where the bias current sets the dependence of the click probability on the photon number; this bias current is used as tuning parameter in the state reconstruction. The nonlinear response makes our nanowire-based detector superior to the linear detectors that are conventionally used for quantum state reconstruction.Comment: revision of intro compared to V
    • …
    corecore