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We investigate the performance of a single-element superconducting single-photon detector (SSPD) for
quantum state reconstruction. We perform quantum state reconstruction, using the measured photon counting
behavior of the detector. Standard quantum state reconstruction assumes a linear response; this simple model fails
for SSPDs, which are known to show a nonlinear response intrinsic to the detection mechanism. We quantify the
photon counting behavior of the SSPD by a sparsity-based detector tomography technique and use this to perform
quantum state reconstruction of both thermal and coherent states. We find that the nonlinearities inherent in the
detection process enhance the ability of the detector to do state reconstruction compared to a linear detector with
similar efficiency for detecting single photons.

DOI: 10.1103/PhysRevA.86.062113 PACS number(s): 03.65.Wj, 42.50.−p, 85.25.−j

I. INTRODUCTION

We investigate the photon counting abilities of supercon-
ducting single-photon detectors (SSPDs) [1], motivated by
the recent upsurge in the use of such detectors in quantum
optics [2,3] and quantum cryptography [4,5] experiments.
SSPDs are fast [6], spectrally broadband [7–9] single-photon
sensitive detectors with low noise [10]. These detectors consist
of an ultrathin meandering strip of a superconductor with low
Cooper pair density, typically NbN. When biased close to the
critical current, the absorption of a photon produces a transition
from the superconducting to the normal state, resulting in the
creation of a resistive area and the appearance of a voltage
pulse in the external readout circuit.

It was previously shown [1,11–14] that depending on the
bias current through the superconductor, the detector has
multiphoton regimes, where the energy from several photons
is required to break the superconductivity. These multiphoton
detection events, which depend on several photons being
absorbed close together, increase the probability of the detector
clicking in a nontrivial way [12,13,15].

Quantum state reconstruction involves finding the photon
number distribution of an unknown quantum state of light
from the response of some detector. This task is of fundamental
importance for any quantum optics or quantum communication
experiment, as the final step in such an experiment is always
the measurement of the photon occupation number in a
particular detection mode. Surprisingly, the reconstruction of
a radiation field can be one with a single detector that has
only an on/off output [16]. This is possible because measuring
the count rate at different settings of the detector (e.g., at
different efficiencies) produces a response curve characteristic
for each photon number. The reconstructed distribution of
photon numbers for an unknown state is then given by the
linear combination of response curves that best describes the
measured count rates of that state [16–25]. By taking into
account the finite efficiency of the detector, it is possible to
reconstruct the state at the input of the detector rather than the
statistics of the absorbed photons.

The results in this paper are divided into three parts.
In Sec. III, we perform a modified version of detector

tomography [26,27] on the SSPD. This tomography quantifies
the complex behavior of the device, enabling the use of the
SSPD in situations where responses to several different photon
numbers are important. By using a technique that has minimal
assumptions, we overcome the problem that the understanding
of the working of the detector is still incomplete [28], harness-
ing the SSPD for quantitative multiphoton applications. Our
tomographic technique is based on sparsity. The advantage
of a sparsity-based technique is its robustness [12]. We show
explicitly how to apply this tomographic technique to an SSPD.

Next, in Sec. IV, we perform quantum state reconstruction
with the SSPD. We reconstruct states with average photon
numbers up to 〈n〉 = 11.4, thereby showing that the to-
mographic process was successful, and demonstrating that
it is possible to use a nonlinear device for quantum state
reconstruction. We reconstruct both coherent and thermal
states.

Lastly, in Sec. V, we evaluate the effect of these nonlin-
earities on the quality of the state reconstruction process.
By evaluating the Cramer-Rao bound—the theoretical limit
on the amount of information that may be extracted from a
measurement—we establish that the intrinsic nonlinearities of
an SSPD are beneficial for quantum state reconstruction.

II. THEORY: QUANTUM STATE RECONSTRUCTION

The goal of quantum state reconstruction is to reconstruct
the diagonal elements ρnn = diag(ρ) of the input state of the
light. From observations at different configurations of the
detector, it is possible to reconstruct the state because each
photon number gives a particular response on the detector that
is characteristic of that photon number. The task is to find from
the set of response curves the linear combination of photon
numbers that best describes the measured count rate of some
unknown state. The response of the detector at each setting
ν of the tuning parameter is described by a positive operator-
valued measure (POVM) element �ν = �n�νn|n〉〈n|, and the
detector responds to the state with a probability Rν = Tr(ρ�ν).
The POVM contains a full quantitative description of the
measurement process.
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Due to the shot noise associated with the discreteness of
the photon counting process, the problem of solving this
set of equations simultaneously is inevitably statistical in
nature, since the equations will not be analytically invertible.
This problem can be solved by a maximum likelihood
(ML) technique, using the expectation maximization (EM)
algorithm [16–23] to find the best solution, while respecting
the normalization of the state. A derivation is given in Ref. [20].
The ith iteration of this algorithm is given by

ρ(i+1)
nn = ρ(i)

nn

N0∑
ν=1

�νn∑
λ �λn

Rν

pν(ρ(i))
, (1)

where ρ(i) is the state at the ith iteration, N0 is the total
number of experimental preparations, Rν is the measured click
probability at the νth experimental configuration and pν(ρ(i))
is the calculated click probability at the νth experimental
configuration. It is known that this algorithm converges to
the ML solution, for which the standard errors are given
by the Cramer-Rao bound [23]. It is also known that this
algorithm can take many iterations to converge. Following
earlier work [16–23], we take our number of iterations to
be 106.

III. EXPERIMENTAL SETUP

The SSPD used in this experiment is a commercial NbN
meander produced by Scontel. The width of the wire is
100 nm, and the distance between the wires is 150 nm. The size
of the active area is 10 μm by 10 μm. The device was cooled
in a bath cryostat to a temperature of 1.7 K. The measured
overall system quantum efficiency for the one-photon Fock
state was 2.8% at a bias current of 13.3 μA (corresponding to
Ib/Ic ≈ 0.9) and a wavelength of λ = 1500 nm.

For our detector tomography procedure, we illuminate the
device with a series of coherent states varying from 130 fW
to 108 nW (0.05 to 4.1×104 photons/pulse). The low powers
were achieved with a computer-controlled variable attenuator,
whose linearity to −60 dB was verified independently. From
the measured response to coherent states, we reconstruct the
POVM using the method described below. The coherent states
were generated by a Fianium supercontinuum pulsed laser.
The repetition rate of this laser was 20 MHz, the specified
pulse width <7 ps. The light was filtered to have a center
wavelength λ0 = 1500 nm and a spectral width �λ = 12 nm.
The observed POVM was then used to reconstruct coherent
and thermal states. We verified independently that the output
from our supercontinuum laser is indeed a coherent state. We
measure g(2)(0) with a coincidence circuit and obtain g(2)(0) =
0.97 ± 0.02.

We generate pseudothermal states by the standard technique
of a rotating ground glass plate [29], which was illuminated
with the coherent states described above. The exponential
probability distribution of the intensity of the resulting speck-
les creates photon statistics that are equivalent to thermal light
when averaged over many realizations of the angle setting of
the plate.

Unfortunately, after the reconstruction of the coherent
states, the alignment of the detector in the cryostat was
degraded. We therefore recharacterized the device in its new

configuration with a set of coherent states before performing
the reconstruction of the thermal states. The degradation
manifests itself as an increased dark count probability, which
was 0.01 per pulse at Ib/Ic ≈ 0.9.

IV. SPARSITY-BASED TOMOGRAPHY

We start by measuring the detector response curves (i.e.,
the detection probability versus detector bias current) for
a set of coherent states. From these, we deduce the more
fundamental response curves for Fock states. Figure 1 shows
the resulting set of inferred detector response curves (i.e., the
probability of the detector to respond to a certain Fock state).
The detector tomography is performed by a method based on
the one described in Ref. [12]. The essential assumption is
one of sparsity: we describe the detector by as few physical
parameters as possible, while not restricting the possible range
of behaviors that our model describes. More specifically, we
describe our detector by a combination of linear attenuation
(given by linear losses in the detection process such as the
finite absorption of the NbN layer) followed by a nonlinear
photodetection process inside the NbN layer. The reason for
including a linear efficiency separately is that it significantly
reduces the number of parameters required to model the
detector, making the tomography more robust.

A second reason is that nonunity linear efficiency introduces
correlations between the various �νn at one bias current. The
reason for this is that at nonunity efficiency, the n photons
necessary for an n-photon nonlinear process could have come
from any N > n number of incident photons. By explicitly
including this effect, we make sure that our reconstructed
POVM is compatible with this process.

This description in terms of a linear absorber and a nonlinear
process, which we showed to be applicable to the NbN
nanodetector [14] is applicable to the SSPD as well. We can

FIG. 1. (Color online) Response curves inferred from detector
tomography as a function of bias current through the device. On the
x axis is the bias current, on the y axis is the probability that the
detector responds to a particular number of photons (Fock state). The
black line indicates 0 photons, the arrow indicates the direction of
increasing photon number. Note that we have shown only the first
incident 15 photon numbers for clarity.
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therefore write for the click probability

Rν = e−η〈n〉
k=∞∑
k=0

pνk

(η〈n〉)k
k!

, (2)

where η is the linear efficiency, 〈n〉 is the mean photon number,
Rν is the count rate at a given bias current, and the pνk are
the POVM elements prior to the inclusion of the finite linear
efficiency. These elements now only include the nonlinear
effects of the detector (i.e., the photon number threshold
regime that the detector is in, which depends on the bias
current).

After each fit, where the fits at different currents are
completely independent, we reinclude the η into the pνk to
produce the POVM element �νk by the following procedure:
first, we fix the number nmr at which we are going to
truncate the Hilbert space for the reconstruction. Then, we
construct a vector of length nmr , where the first five elements
are pνn, and the other elements are equal to 1. Finally,
we multiply this vector by a Bernoulli transformation [30]
Lkk′ = ( k

k′ )ηk′
(1 − η)k−k′

, absorbing the linear losses into the
POVM. We perform state reconstruction with the POVM
consisting of all �νk obtained at different currents.

For this experiment, we are not interested in separating the
linear and nonlinear effects, but rather in finding a description
of the entire detector. Therefore, we truncate the sum at
nmax = 4 for all currents. This is equivalent to assuming that
the detector is governed only by linear effects at sufficiently
high photon numbers. This choice is motivated by the fact that
we do not enter the three-photon regime in the current range
over which we operate our detector and is justified by the good
fits obtained with this model.

For the analysis, we grid our measured count rates by linear
interpolation, producing 165 current settings, from 5 μA to
13.25 μA, which is the current range over which we could
measure count rates at enough powers to create a good fit.
This is also the current range over which we perform the state
reconstruction.

V. QUANTUM STATE RECONSTRUCTION

Figure 2 shows a representative sample of the reconstructed
coherent and thermal states. We reconstruct a series of coherent
and thermal states, using the algorithm given by Eq. (1), iter-
ated 106 times. For the quality of our reconstruction we use the
fidelity, defined as F = ∑n=30

n=0

√
ρnnρ̃nn, where ρ̃ represents

the density matrix of the coherent state corresponding to the
average number of photons found in the reconstruction.

Figure 3 shows the fidelity of the state reconstruction, as
a function of mean photon number 〈n〉. We observe that the
quality of the reconstruction degrades as the average number
of photons increases. This can be understood from Fig. 1: as
the number of photons increases, the curves lie closer together,
making it more difficult to distinguish the contributions from
various photon numbers.

The theoretical curves in Fig. 3 were generated by sim-
ulating the experiment. Each experiment was simulated 30
times to obtain a reasonable estimate of the expected fidelity.
The simulations were performed by calculating expected count
rates from the POVM and a given state. For each calculated

FIG. 2. (Color online) Six typical reconstructed states. (a)–(d)
show coherent states, (e) and (f) are thermal states. The red bars show
the closest coherent [for (a)–(d)] or thermal [(e) and (f)] state, the
black bars show the reconstructed state [i.e., the result of Eq. (1) after
106 iterations]. The fidelities and mean photon numbers are indicated
for each reconstructed state.

count rate curve we assumed a constant relative error. We made
the approximation that these errors are uniformly distributed
within the interval [R − �R, R + �R].

We compared the mean square error χ2 for the recon-
structed coherent and thermal states with the theoretically
expected count rates for coherent and thermal statistics. From
this analysis we conclude that we can successfully distinguish
between coherent and thermal states. At larger values of
〈n〉 the value of χ2 becomes large, indicating that the state
reconstruction becomes inaccurate and loses its ability to

FIG. 3. (Color online) Fidelity of the reconstructed states as
function of mean photon number. The solid black squares indicate
reconstructed coherent states, the open red circles indicate recon-
structed thermal states. The lines indicate the results for the expected
fidelities from simulations.
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correctly predict the quantum state. This happens at 〈n〉 ≈ 9
and 〈n〉 ≈ 15 for the thermal and coherent states respectively.

By comparison with the measurements, we find that the
relative error �R/R is 2% for the coherent states, and
6% for the thermal states. These numbers are justified by
the observed deviations between count rates expected from
the reconstructed states and the measured count rates. We
attribute this error to the uncertainty in setting the bias current
through the device, where �R/R = 2% corresponds to 40 nA
of uncertainty in the bias current. We attribute the higher
uncertainty for the thermal states to residual variations in the
input intensity caused by the rotating ground glass plate.

VI. NONLINEARITY-ENHANCED QSR

In Fig. 4, we show the effect of the Poissonian (shot-noise)
errors on our reconstruction, calculated from the Cramér-Rao
bound [16,23]. In this figure, we compare the expected error
bars for state reconstruction of our SSPD with those of an
APD of linear efficiency equal to the SSPD. The shot-noise
error is the fundamental lower limit on the error and is fixed
for a given state. Therefore, it is relevant to investigate the state
reconstruction abilities of a detector.

Figure 4 shows that the errors in the reconstruction of the
SSPD are 50% lower than those of an APD with equivalent
efficiency. We attribute this to the nonlinear effects, which give
our detector higher efficiency at the multiphoton level [13]. The
physical reason for this nonlinearity is that two photons that
are absorbed close together on the nanowire have an enhanced
probability to make the detector click. This is in contrast
with an avalanche photodiode, where—as long as each photon
overcomes the band gap—there is no mechanism where the
photons assist one another in producing an avalanche.

FIG. 4. (Color online) Theoretical limitations on state reconstruc-
tion, as calculated from the Cramér-Rao bound, for the same coherent
state (〈n〉 = 2.5) measured by two different detectors. This figure
shows the limits on the ability of the detector to find the components
ρnn of this state. We show the relative error (i.e., δ ρnn = σρnn

/ρnn).
The black points indicate the errors expected for our SSPD, the red
ones are for an APD of linear efficiency equal to our SSPD, where
the linear efficiency is the tuning parameter. The errors are calculated
assuming 6 × 108 measurements divided over 100 settings of the
tuning parameter, corresponding to 30 s experimentation time. This
figure shows that the nonlinear effects in the SSPD are beneficial for
state reconstruction.

VII. DISCUSSION

In previous state reconstruction experiments, avalanche
photodiodes (APDs) were used as detectors [16], where the
tuning parameter was the attenuation of an extra attenuator
inserted in front of the detector. These detectors have a POVM
element determined only by linear attenuation, combined
with single-photon threshold behavior. Banaszek has noted
before [20] that state reconstruction is not limited to �νn

containing only linear attenuation. In this work, we perform
state reconstruction with a POVM that contains nonlinear as
well as linear terms.

We find that the practical limitation of our experiment is
the accuracy with which we can set the current. We note,
however, that this is no fundamental limitation, as there are
current meters available that have a much higher resolution
than the one used in our experiment. Furthermore, we note
that the Cramer-Rao bound (CRB) has the usual square-root
dependence on the number of measurements made, indicating
that longer measurement times will improve the quality of the
reconstruction as well.

The EM algorithm is known to converge to a solution that
saturates the CRB, meaning that we achieve the lowest possible
variance (i.e., the optimal solution) for our reconstruction.
Moreover, through propagation of errors, the limits on state
reconstruction set hard limits on the ability of the detector
to measure other quantities, which are functions of the
input state, such as the second-order correlation function
g(2)(0) [31]. Therefore, state reconstruction is a fundamental
tool to investigate detectors operating at the few-photon
level (e.g., multi-element SSPD detectors [11,32–34]). Since
state reconstruction is performed at the limit of the amount
of information that can be extracted from a measurement,
investigating the state reconstruction abilities of a detector
may yield better understanding of its capabilities. Furthermore,
since QSR probes the limits of the abilities of a detector, we
propose it as a useful benchmark tool to compare various
SSPDs.

In this work, we have used a commercial SSPD, with an
efficiency of up to 2.8%. However, recently, great strides have
been taken in making SSPDs more efficient, by including
cavity structures on the SSPD [35–37], by switching to
different materials such as WSi [38], and by incorporation
of SSPDs in nanophotonic wave guides [39,40]. Marsili et al.
report efficiencies as high as 93%. The present work opens
up the possibility of using such high-efficiency devices for
quantum state reconstruction.

It is an open question whether these more efficient detectors
would have beneficial multiphoton nonlinearities similar to
the detector reported on in the present work. We note that
this nonlinear effect has also been reported in Ref. [13], and
since it is due to a physical effect that will also be present in
more efficient detectors (namely the absorption of two photons
close together) there is nothing that precludes it. Detector
tomography of a high-efficiency SSPD is necessary to answer
this question.

The present work opens up the possibility of applying the
ideas of optimal experimental design to the design of SSPDs.
For quantum tomography of a spin-1/2 system, there has
been work [41] on how to optimize the POVM used in a
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measurement to yield the optimal tomography result. Similar
reasoning may be applied to design an SSPD that is particularly
suitable for reconstructing particular states, or for measuring
particular properties of states. Such optimization, constrained
by what is possible with present production techniques,
would focus on the width of the wire (which governs the
nonlinearity), length of wire segments, number of elements in
a multi-element detector, and the relative size and detection
efficiency of each element.

VIII. CONCLUSION

We have shown quantum state reconstruction with an SSPD.
The SSPD is especially suited for this task because of its
low noise, fast response time, its intrinsic tuning parameter
in the form of the bias current through the device, and the
nonlinearities, which enhance the state reconstruction abilities.

Since the fundamental physics of this device is not known,
we have performed a detector tomography procedure in order
to find the parameters describing the response of this device
(POVM). We thus demonstrate state reconstruction with an
experimentally determined POVM. This illustrates the utility
of detector tomography.
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