1,581 research outputs found

    Influence of a partially oxidized calcium cathode on the performance of polymeric light emitting diodes

    Get PDF
    We investigated the influence of the presence of oxygen during the deposition of the calcium cathode on the structure and on the performance of polymeric light emitting diodes (pLEDs). The oxygen background pressure during deposition of the calcium cathode of polymeric LEDs was varied. Subsequently, the oxygen depth distribution was measured and correlated with the performance of the pLEDs. The devices have been fabricated in a recently built ultraclean setup. The polymer layers of the pLEDs have been spincoated in a dry nitrogen atmosphere and transported directly into an ultrahigh vacuum chamber where the metal electrodes have been deposited by evaporation. We used indium–tin–oxide as anode, OC1C10 PPV as electroluminescent polymer, calcium as cathode, and aluminum as protecting layer. We achieved reproducibility of about 15% in current and brightness for devices fabricated in an oxygen atmosphere of less than or equal to 10 -9 mbar. For further investigations the calcium deposition was carried out in an oxygen atmosphere from 10 -8 to 10 -5 mbar. We determined the amount of oxygen in the different layers of the current–voltage-light characterized pLEDs with elastic recoil detection analysis and correlated it with the characteristics of the devices. The external efficiency of the pLEDs decreases continuously with increasing oxygen pressure, the current shows a pronounced minimum. The brightness mostly decreases with increasing oxygen with an indication of a slight minimum. PLEDs with completely oxidized calcium are not operational. The first contact of the pLEDs with the dry glove box environment leads to an immediate reduction of current and brightness which is caused by the cooling of the devices by several degrees. Determining reproducible characteristics of pLEDs in the vacuum requires the measurement of their temperature

    Yang-Lee zeros for a nonequilibrium phase transition

    Full text link
    Equilibrium systems which exhibit a phase transition can be studied by investigating the complex zeros of the partition function. This method, pioneered by Yang and Lee, has been widely used in equilibrium statistical physics. We show that an analogous treatment is possible for a nonequilibrium phase transition into an absorbing state. By investigating the complex zeros of the survival probability of directed percolation processes we demonstrate that the zeros provide information about universal properties. Moreover we identify certain non-trivial points where the survival probability for bond percolation can be computed exactly.Comment: LaTeX, IOP-style, 13 pages, 10 eps figure

    Optical echo in photonic crystals

    Get PDF
    The dynamics of photonic wavepacket in the effective oscillator potential is studied. The oscillator potential is constructed on a base of one dimensional photonic crystal with a period of unit cell adiabatically varied in space. The structure has a locally equidistant discrete spectrum. This leads to an echo effect, i.e. the periodical reconstruction of the packet shape. The effect can be observed in a nonlinear response of the system. Numerical estimations for porous-silicon based structures are presented for femtosecond Ti:Sapphire laser pump.Comment: 4 page

    Staggering effects in nuclear and molecular spectra

    Get PDF
    It is shown that the recently observed Delta J = 2 staggering effect (i.e. the relative displacement of the levels with angular momenta J, J+4, J+8, ..., relatively to the levels with angular momenta J+2, J+6, J+10, ...) seen in superdeformed nuclear bands is also occurring in certain electronically excited rotational bands of diatomic molecules (YD, CrD, CrH, CoH), in which it is attributed to interband interactions (bandcrossings). In addition, the Delta J = 1 staggering effect (i.e. the relative displacement of the levels with even angular momentum J with respect to the levels of the same band with odd J) is studied in molecular bands free from Delta J = 2 staggering (i.e. free from interband interactions/bandcrossings). Bands of YD offer evidence for the absence of any Delta J = 1 staggering effect due to the disparity of nuclear masses, while bands of sextet electronic states of CrD demonstrate that Delta J = 1 staggering is a sensitive probe of deviations from rotational behaviour, due in this particular case to the spin-rotation and spin-spin interactions.Comment: LaTeX, 16 pages plus 30 figures given in separate .ps files. To appear in the proceedings of the 4th European Workshop on Quantum Systems in Chemistry and Physics (Marly-le-Roi, France, 1999), ed. J. Maruani et al. (Kluwer, Dordrecht

    ΔI=4\Delta I=4 and ΔI=8\Delta I=8 bifurcations in rotational bands of diatomic molecules

    Full text link
    It is shown that the recently observed ΔI=4\Delta I=4 bifurcation seen in superdeformed nuclear bands is also occurring in rotational bands of diatomic molecules. In addition, signs of a ΔI=8\Delta I=8 bifurcation, of the same order of magnitude as the ΔI=4\Delta I=4 one, are observed both in superdeformed nuclear bands and rotational bands of diatomic molecules.Comment: LaTex twice, 10 pages and 5 PS figures provided upon demand by the Author

    Triangle-Free Penny Graphs: Degeneracy, Choosability, and Edge Count

    Full text link
    We show that triangle-free penny graphs have degeneracy at most two, list coloring number (choosability) at most three, diameter D=Ω(n)D=\Omega(\sqrt n), and at most min(2nΩ(n),2nD2)\min\bigl(2n-\Omega(\sqrt n),2n-D-2\bigr) edges.Comment: 10 pages, 2 figures. To appear at the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Intruder bands and configuration mixing in the lead isotopes

    Full text link
    A three-configuration mixing calculation is performed in the context of the interacting boson model with the aim to describe recently observed collective bands built on low-lying 0+0^+ states in neutron-deficient lead isotopes. The configurations that are included correspond to the regular, spherical states as well as two-particle two-hole and four-particle four-hole excitations across the Z=82 shell gap.Comment: 20 pages, 4 figures, accepted by PRC, reference added for section 1 in this revised versio

    e+e--pair production in Pb-Au collisions at 158 GeV per nucleon

    Get PDF
    We present the combined results on electron-pair production in 158 GeV/n {Pb-Au} (s\sqrt{s}= 17.2 GeV) collisions taken at the CERN SPS in 1995 and 1996, and give a detailed account of the data analysis. The enhancement over the reference of neutral meson decays amounts to a factor of 2.31±0.19(stat.)±0.55(syst.)±0.69(decays)\pm0.19 (stat.)\pm0.55 (syst.)\pm0.69 (decays) for semi-central collisions (28% σ/σgeo\sigma/\sigma_{geo}) when yields are integrated over m>m> 200 MeV/c2c^2 in invariant mass. The measured yield, its stronger-than-linear scaling with NchN_{ch}, and the dominance of low pair ptp_t strongly suggest an interpretation as {\it thermal radiation} from pion annihilation in the hadronic fireball. The shape of the excess centring at mm\approx 500 MeV/c2c^2, however, cannot be described without strong medium modifications of the ρ\rho meson. The results are put into perspective by comparison to predictions from Brown-Rho scaling governed by chiral symmetry restoration, and from the spectral-function many-body treatment in which the approach to the phase boundary is less explicit.Comment: 39 pages, 40 figures, to appear in Eur.Phys.J.C. (2005
    corecore