443 research outputs found

    Generalizing the Network Scale-Up Method: A New Estimator for the Size of Hidden Populations

    Get PDF
    The network scale-up method enables researchers to estimate the size of hidden populations, such as drug injectors and sex workers, using sampled social network data. The basic scale-up estimator offers advantages over other size estimation techniques, but it depends on problematic modeling assumptions. We propose a new generalized scale-up estimator that can be used in settings with non-random social mixing and imperfect awareness about membership in the hidden population. Further, the new estimator can be used when data are collected via complex sample designs and from incomplete sampling frames. However, the generalized scale-up estimator also requires data from two samples: one from the frame population and one from the hidden population. In some situations these data from the hidden population can be collected by adding a small number of questions to already planned studies. For other situations, we develop interpretable adjustment factors that can be applied to the basic scale-up estimator. We conclude with practical recommendations for the design and analysis of future studies

    The Network Survival Method for Estimating Adult Mortality: Evidence From a Survey Experiment in Rwanda.

    Get PDF
    Adult death rates are a critical indicator of population health and well-being. Wealthy countries have high-quality vital registration systems, but poor countries lack this infrastructure and must rely on estimates that are often problematic. In this article, we introduce the network survival method, a new approach for estimating adult death rates. We derive the precise conditions under which it produces consistent and unbiased estimates. Further, we develop an analytical framework for sensitivity analysis. To assess the performance of the network survival method in a realistic setting, we conducted a nationally representative survey experiment in Rwanda (n = 4,669). Network survival estimates were similar to estimates from other methods, even though the network survival estimates were made with substantially smaller samples and are based entirely on data from Rwanda, with no need for model life tables or pooling of data from other countries. Our analytic results demonstrate that the network survival method has attractive properties, and our empirical results show that this method can be used in countries where reliable estimates of adult death rates are sorely needed

    Breaking a one-dimensional chain: fracture in 1 + 1 dimensions

    Full text link
    The breaking rate of an atomic chain stretched at zero temperature by a constant force can be calculated in a quasiclassical approximation by finding the localized solutions ("bounces") of the equations of classical dynamics in imaginary time. We show that this theory is related to the critical cracks of stressed solids, because the world lines of the atoms in the chain form a two-dimensional crystal, and the bounce is a crack configuration in (unstable) mechanical equilibrium. Thus the tunneling time, Action, and breaking rate in the limit of small forces are determined by the classical results of Griffith. For the limit of large forces we give an exact bounce solution that describes the quantum fracture and classical crack close to the limit of mechanical stability. This limit can be viewed as a critical phenomenon for which we establish a Levanyuk-Ginzburg criterion of weakness of fluctuations, and propose a scaling argument for the critical regime. The post-tunneling dynamics is understood by the analytic continuation of the bounce solutions to real time.Comment: 15 pages, 5 figure

    Controlling Fairness and Bias in Dynamic Learning-to-Rank

    Full text link
    Rankings are the primary interface through which many online platforms match users to items (e.g. news, products, music, video). In these two-sided markets, not only the users draw utility from the rankings, but the rankings also determine the utility (e.g. exposure, revenue) for the item providers (e.g. publishers, sellers, artists, studios). It has already been noted that myopically optimizing utility to the users, as done by virtually all learning-to-rank algorithms, can be unfair to the item providers. We, therefore, present a learning-to-rank approach for explicitly enforcing merit-based fairness guarantees to groups of items (e.g. articles by the same publisher, tracks by the same artist). In particular, we propose a learning algorithm that ensures notions of amortized group fairness, while simultaneously learning the ranking function from implicit feedback data. The algorithm takes the form of a controller that integrates unbiased estimators for both fairness and utility, dynamically adapting both as more data becomes available. In addition to its rigorous theoretical foundation and convergence guarantees, we find empirically that the algorithm is highly practical and robust.Comment: First two authors contributed equally. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval 202

    Why We Read Wikipedia

    Get PDF
    Wikipedia is one of the most popular sites on the Web, with millions of users relying on it to satisfy a broad range of information needs every day. Although it is crucial to understand what exactly these needs are in order to be able to meet them, little is currently known about why users visit Wikipedia. The goal of this paper is to fill this gap by combining a survey of Wikipedia readers with a log-based analysis of user activity. Based on an initial series of user surveys, we build a taxonomy of Wikipedia use cases along several dimensions, capturing users' motivations to visit Wikipedia, the depth of knowledge they are seeking, and their knowledge of the topic of interest prior to visiting Wikipedia. Then, we quantify the prevalence of these use cases via a large-scale user survey conducted on live Wikipedia with almost 30,000 responses. Our analyses highlight the variety of factors driving users to Wikipedia, such as current events, media coverage of a topic, personal curiosity, work or school assignments, or boredom. Finally, we match survey responses to the respondents' digital traces in Wikipedia's server logs, enabling the discovery of behavioral patterns associated with specific use cases. For instance, we observe long and fast-paced page sequences across topics for users who are bored or exploring randomly, whereas those using Wikipedia for work or school spend more time on individual articles focused on topics such as science. Our findings advance our understanding of reader motivations and behavior on Wikipedia and can have implications for developers aiming to improve Wikipedia's user experience, editors striving to cater to their readers' needs, third-party services (such as search engines) providing access to Wikipedia content, and researchers aiming to build tools such as recommendation engines.Comment: Published in WWW'17; v2 fixes caption of Table

    Bias reduction in traceroute sampling: towards a more accurate map of the Internet

    Full text link
    Traceroute sampling is an important technique in exploring the internet router graph and the autonomous system graph. Although it is one of the primary techniques used in calculating statistics about the internet, it can introduce bias that corrupts these estimates. This paper reports on a theoretical and experimental investigation of a new technique to reduce the bias of traceroute sampling when estimating the degree distribution. We develop a new estimator for the degree of a node in a traceroute-sampled graph; validate the estimator theoretically in Erdos-Renyi graphs and, through computer experiments, for a wider range of graphs; and apply it to produce a new picture of the degree distribution of the autonomous system graph.Comment: 12 pages, 3 figure

    Quantum Breaking of Elastic String

    Full text link
    Breaking of an atomic chain under stress is a collective many-particle tunneling phenomenon. We study classical dynamics in imaginary time by using conformal mapping technique, and derive an analytic formula for the probability of breaking. The result covers a broad temperature interval and interpolates between two regimes: tunneling and thermal activation. Also, we consider the breaking induced by an ultrasonic wave propagating in the chain, and propose to observe it in an STM experiment.Comment: 8 pages, RevTeX 3.0, Landau Institute preprint 261/643

    Universality in movie rating distributions

    Full text link
    In this paper histograms of user ratings for movies (1,...,10) are analysed. The evolving stabilised shapes of histograms follow the rule that all are either double- or triple-peaked. Moreover, at most one peak can be on the central bins 2,...,9 and the distribution in these bins looks smooth `Gaussian-like' while changes at the extremes (1 and 10) often look abrupt. It is shown that this is well approximated under the assumption that histograms are confined and discretised probability density functions of L\'evy skew alpha-stable distributions. These distributions are the only stable distributions which could emerge due to a generalized central limit theorem from averaging of various independent random avriables as which one can see the initial opinions of users. Averaging is also an appropriate assumption about the social process which underlies the process of continuous opinion formation. Surprisingly, not the normal distribution achieves the best fit over histograms obseved on the web, but distributions with fat tails which decay as power-laws with exponent -(1+alpha) (alpha=4/3). The scale and skewness parameters of the Levy skew alpha-stable distributions seem to depend on the deviation from an average movie (with mean about 7.6). The histogram of such an average movie has no skewness and is the most narrow one. If a movie deviates from average the distribution gets broader and skew. The skewness pronounces the deviation. This is used to construct a one parameter fit which gives some evidence of universality in processes of continuous opinion dynamics about taste.Comment: 8 pages, 5 figures, accepted for publicatio

    An Experimental Study of Cryptocurrency Market Dynamics

    Full text link
    As cryptocurrencies gain popularity and credibility, marketplaces for cryptocurrencies are growing in importance. Understanding the dynamics of these markets can help to assess how viable the cryptocurrnency ecosystem is and how design choices affect market behavior. One existential threat to cryptocurrencies is dramatic fluctuations in traders' willingness to buy or sell. Using a novel experimental methodology, we conducted an online experiment to study how susceptible traders in these markets are to peer influence from trading behavior. We created bots that executed over one hundred thousand trades costing less than a penny each in 217 cryptocurrencies over the course of six months. We find that individual "buy" actions led to short-term increases in subsequent buy-side activity hundreds of times the size of our interventions. From a design perspective, we note that the design choices of the exchange we study may have promoted this and other peer influence effects, which highlights the potential social and economic impact of HCI in the design of digital institutions.Comment: CHI 201
    • …
    corecore