7,186 research outputs found
Calibration of the high-frequency magnetic fluctuation diagnostic in plasma devices
The increasing reservoirs of energetic particles which drive high-frequency modes, together with advances in the understanding of magnetohydrodynamics, have led to a need for higher-frequency (50 kHz to >20MHz) measurements of magnetic field fluctuations in magnetic fusion devices such as tokamaks. This article uses transmission line equations to derive the voltage response of a Mirnov coil at the digitizer end of a transmission line of length â. It is shown that, depending on the terminations of the line, resonances can occur even for â/λâȘĄ1, with λ the wavelength of a fluctuation in the transmission line. A lumped-circuit model based on the approach of Heeter et al. [R. F. Heeter, A. F. Fasoli, S. Ali-Arshad, and J. M. Moret. Rev. Sci. Instrum.71, 4092 (2000)] is extended to enable the inclusion simultaneously of both serial resistance and parallel conductance elements. As originally proposed by Heeter et al. the lumped-circuit model offers the advantage of remote calibration; this may be of particular value when upgrading existing systems to operate at frequencies above the original design specification. It is formally shown that the transmission line equations for the transfer function and measured impedance reduce to those of the lumped circuit model of Heeter et al. under specific conditions. The result extends the use of the lumped-circuit model of Heeter et al., which can be used to extract the transfer function from measurement of the impedance, beyond the case of an open-circuit termination. Although the numerical procedure does exhibit some problems associated with non-uniqueness, it provides a simple calibration method for systems that are not well defined. Using typical parameters for a high-frequency Mirnov coil installed on the Joint European Torus (JET) tokamak, the lumped-circuit approximation agrees with the steady-state transmission line model to within 0.015° in phase and 22% in amplitude for frequencies up to 1 MHz. A matched termination, though eliminating line resonances and reducing the length of time for the system to reach steady state, is inappropriate for the JET-type coils which exhibit significant temperature-dependent resistance. Finally, for fluctuations of finite duration, a method of computing the discrepancy due to the simplifying assumption of Fourier-stationary conditions is described.This work was funded jointly by the United Kingdom
Engineering and Physical Sciences Research Council and by EURATOM
Spin squeezing of atomic ensembles by multi-colour quantum non-demolition measurements
We analyze the creation of spin squeezed atomic ensembles by simultaneous
dispersive interactions with several optical frequencies. A judicious choice of
optical parameters enables optimization of an interferometric detection scheme
that suppresses inhomogeneous light shifts and keeps the interferometer
operating in a balanced mode that minimizes technical noise. We show that when
the atoms interact with two-frequency light tuned to cycling transitions the
degree of spin squeezing scales as where is the
resonant optical depth of the ensemble. In real alkali atoms there are loss
channels and the scaling may be closer to Nevertheless
the use of two-frequencies provides a significant improvement in the degree of
squeezing attainable as we show by quantitative analysis of non-resonant
probing on the Cs D1 line. Two alternative configurations are analyzed: a
Mach-Zehnder interferometer that uses spatial interference, and an interaction
with multi-frequency amplitude modulated light that does not require a spatial
interferometer.Comment: 7 figure
Evidence cross-validation and Bayesian inference of MAST plasma equilibria
In this paper, current profiles for plasma discharges on the Mega-Ampere
Spherical Tokamak (MAST) are directly calculated from pickup coil, flux loop
and Motional-Stark Effect (MSE) observations via methods based in the
statistical theory of Bayesian analysis. By representing toroidal plasma
current as a series of axisymmetric current beams with rectangular
cross-section and inferring the current for each one of these beams,
flux-surface geometry and q-profiles are subsequently calculated by elementary
application of Biot-Savart's law. The use of this plasma model in the context
of Bayesian analysis was pioneered by Svensson and Werner on the Joint-European
Tokamak (JET) [J. Svensson and A. Werner. Current tomography for axisymmetric
plasmas. Plasma Physics and Controlled Fusion, 50(8):085002, 2008]. In
this framework, linear forward models are used to generate diagnostic
predictions, and the probability distribution for the currents in the
collection of plasma beams was subsequently calculated directly via application
of Bayes' formula. In this work, we introduce a new diagnostic technique to
identify and remove outlier observations associated with diagnostics falling
out of calibration or suffering from an unidentified malfunction. These
modifications enable good agreement between Bayesian inference of the last
closed flux-surface (LCFS) with other corroborating data, such as such as that
from force balance considerations using EFIT++ [L. Appel et al., Proc. 33rd EPS
Conf., Rome, Italy, 2006]. In addition, this analysis also yields errors on the
plasma current profile and flux-surface geometry, as well as directly
predicting the Shafranov shift of the plasma core.This work was jointly funded by the Australian Government
through International Science Linkages Grant No.
CG130047, the Australian National University, the United
Kingdom Engineering and Physical Sciences Research
Council under Grant No. EP/G003955, and by the European
Communities under the contract of Association between EURATOM and CCFE
Model Data Fusion: developing Bayesian inversion to constrain equilibrium and mode structure
Recently, a new probabilistic "data fusion" framework based on Bayesian
principles has been developed on JET and W7-AS. The Bayesian analysis framework
folds in uncertainties and inter-dependencies in the diagnostic data and signal
forward-models, together with prior knowledge of the state of the plasma, to
yield predictions of internal magnetic structure. A feature of the framework,
known as MINERVA (J. Svensson, A. Werner, Plasma Physics and Controlled Fusion
50, 085022, 2008), is the inference of magnetic flux surfaces without the use
of a force balance model. We discuss results from a new project to develop
Bayesian inversion tools that aim to (1) distinguish between competing
equilibrium theories, which capture different physics, using the MAST spherical
tokamak; and (2) test the predictions of MHD theory, particularly mode
structure, using the H-1 Heliac.Comment: submitted to Journal of Plasma Fusion Research 10/11/200
Surprises in the suddenly-expanded infinite well
I study the time-evolution of a particle prepared in the ground state of an
infinite well after the latter is suddenly expanded. It turns out that the
probability density shows up quite a surprising behaviour:
for definite times, {\it plateaux} appear for which is
constant on finite intervals for . Elements of theoretical explanation are
given by analyzing the singular component of the second derivative
. Analytical closed expressions are obtained for some
specific times, which easily allow to show that, at these times, the density
organizes itself into regular patterns provided the size of the box in large
enough; more, above some critical time-dependent size, the density patterns are
independent of the expansion parameter. It is seen how the density at these
times simply results from a construction game with definite rules acting on the
pieces of the initial density.Comment: 24 pages, 14 figure
A low-loss, broadband antenna for efficient photon collection from a coherent spin in diamond
We report the creation of a low-loss, broadband optical antenna giving highly
directed output from a coherent single spin in the solid-state. The device, the
first solid-state realization of a dielectric antenna, is engineered for
individual nitrogen vacancy (NV) electronic spins in diamond. We demonstrate a
directionality close to 10. The photonic structure preserves the high spin
coherence of single crystal diamond (T2>100us). The single photon count rate
approaches a MHz facilitating efficient spin readout. We thus demonstrate a key
enabling technology for quantum applications such as high-sensitivity
magnetometry and long-distance spin entanglement.Comment: 5 pages, 4 figures and supplementary information (5 pages, 8
figures). Comments welcome. Further information under
http://www.quantum-sensing.physik.unibas.c
A high resolution Mirnov array for the Mega Ampere Spherical Tokamak
Over the past two decades, the increase in neutral-beam heating and alpha particle production in magnetically confined fusion plasmas has led to an increase in energetic particle driven mode activity, much of which has an electromagnetic signature which can be detected by the use of external Mirnov coils. Typically, the frequency and spatial wave number band of such oscillations increase with increasing injection energy, offering new challenges for diagnostic design. In particular, as the frequency approaches the megahertz range, care must be taken to model the stray capacitance of the coil, which limits the resonant frequency of the probe; model transmission line effects in the system, which if unchecked can produce system resonances; and minimize coil conductive shielding, so as to minimize skin currents which limit the frequency response of the coil. As well as optimizing the frequency response, the coils should also be positioned to confidently identify oscillations over a wide wave number band. This work, which draws on new techniques in stray capacitance modeling and coil positioning, is a case study of the outboard Mirnov array for high-frequency acquisition in the Mega Ampere Spherical Tokamak, and is intended as a roadmap for the design of high frequency, weak field strength magnetic diagnostics.This work was partly funded by the Australian National
University, the United Kingdom Engineering and Physical Sciences Research Council, and by the European Communities
under the contract of Association between EURATOM
and CCFE
Quantum coherence and carriers mobility in organic semiconductors
We present a model of charge transport in organic molecular semiconductors
based on the effects of lattice fluctuations on the quantum coherence of the
electronic state of the charge carrier. Thermal intermolecular phonons and
librations tend to localize pure coherent states and to assist the motion of
less coherent ones. Decoherence is thus the primary mechanism by which
conduction occurs. It is driven by the coupling of the carrier to the molecular
lattice through polarization and transfer integral fluctuations as described by
the hamiltonian of Gosar and Choi. Localization effects in the quantum coherent
regime are modeled via the Anderson hamiltonian with correlated diagonal and
non-diagonal disorder leading to the determination of the carrier localization
length. This length defines the coherent extension of the ground state and
determines, in turn, the diffusion range in the incoherent regime and thus the
mobility. The transfer integral disorder of Troisi and Orlandi can also be
incorporated. This model, based on the idea of decoherence, allowed us to
predict the value and temperature dependence of the carrier mobility in
prototypical organic semiconductors that are in qualitative accord with
experiments
Developments in Rare Kaon Decay Physics
We review the current status of the field of rare kaon decays. The study of
rare kaon decays has played a key role in the development of the standard
model, and the field continues to have significant impact. The two areas of
greatest import are the search for physics beyond the standard model and the
determination of fundamental standard-model parameters. Due to the exquisite
sensitivity of rare kaon decay experiments, searches for new physics can probe
very high mass scales. Studies of the k->pnn modes in particular, where the
first event has recently been seen, will permit tests of the standard-model
picture of quark mixing and CP violation.Comment: One major revision to the text is the branching ratio of KL->ppg,
based on a new result from KTeV. Several references were updated, with minor
modifications to the text. A total of 48 pages, with 28 figures, in LaTeX; to
be published in the Annual Review of Nuclear and Particle Science, Vol. 50,
December 200
- âŠ