363 research outputs found

    Enantioselective synthesis of highly oxygenated acyclic quaternary center-containing building blocks via palladium-catalyzed decarboxylative allylic alkylation of cyclic siloxyketones

    Get PDF
    The development of a palladium-catalyzed enantioselective decarboxylative allylic alkylation of cyclic siloxyketones to produce enantioenriched silicon-tethered heterocycles is reported. The reaction proceeds smoothly to provide products bearing a quaternary stereocenter in excellent yields (up to 91% yield) with high levels of enantioselectivity (up to 94% ee). We further utilized the unique reactivity of the siloxy functionality to access chiral, highly oxygenated acyclic quaternary building blocks. In addition, we subsequently demonstrated the utility of these compounds through the synthesis of a lactone bearing vicinal quaternary-trisubstituted stereocenters

    Virtual Masquerade

    Get PDF
    Little is known about how Twitter is used for sexual engagements. This study aimed to explore the online community of anonymous accounts in Twitter called “Alter” in terms of users’ process of initial exposure and eventual involvement into the online community, the users’ typical online behavior within the virtual community, and their reasons for engaging in it. A sample of 11 men who have sex with men (MSM) who actively engage with other Alter accounts were the participants of the study’s online ethnography of the Alter community. Data were collected by means of interviews and observations. Through thematic analysis, results indicated that sexual satiation runs the online community, yet Alter has been augmented by more complex social benefits including network formation, advocacy sharing, and provision of emotional support and safe space. In sum, Alter Twitter is a tool of Filipino MSMs not just to express and search for sexual gratification but also make meaningful interactions. The Alter community affords these individuals a venue to express themselves sans the consequences to their social life should these accounts become known to people who know them outside of the Internet

    Osteoblastic lysosome plays a central role in mineralization

    Get PDF

    Spectroscopic investigation of quantum confinement effects in ion implanted silicon-on-sapphire films

    Full text link
    Crystalline Silicon-on-Sapphire (SOS) films were implanted with boron (B+^+) and phosphorous (P+^+) ions. Different samples, prepared by varying the ion dose in the range 101410^{14} to 5 x 101510^{15} and ion energy in the range 150-350 keV, were investigated by the Raman spectroscopy, photoluminescence (PL) spectroscopy and glancing angle x-ray diffraction (GAXRD). The Raman results from dose dependent B+^+ implanted samples show red-shifted and asymmetrically broadened Raman line-shape for B+^+ dose greater than 101410^{14} ions cm2^{-2}. The asymmetry and red shift in the Raman line-shape is explained in terms of quantum confinement of phonons in silicon nanostructures formed as a result of ion implantation. PL spectra shows size dependent visible luminescence at \sim 1.9 eV at room temperature, which confirms the presence of silicon nanostructures. Raman studies on P+^+ implanted samples were also done as a function of ion energy. The Raman results show an amorphous top SOS surface for sample implanted with 150 keV P+^+ ions of dose 5 x 101510^{15} ions cm2^{-2}. The nanostructures are formed when the P+^+ energy is increased to 350 keV by keeping the ion dose fixed. The GAXRD results show consistency with the Raman results.Comment: 9 Pages, 6 Figures and 1 Table, \LaTex format To appear in SILICON(SPRINGER

    Detrimental effects of duplicate reads and low complexity regions on RNA- and ChIP-seq data

    Get PDF
    Background Adapter trimming and removal of duplicate reads are common practices in next-generation sequencing pipelines. Sequencing reads ambiguously mapped to repetitive and low complexity regions can also be problematic for accurate assessment of the biological signal, yet their impact on sequencing data has not received much attention. We investigate how trimming the adapters, removing duplicates, and filtering out reads overlapping low complexity regions influence the significance of biological signal in RNA- and ChIP-seq experiments. Methods We assessed the effect of data processing steps on the alignment statistics and the functional enrichment analysis results of RNA- and ChIP-seq data. We compared differentially processed RNA-seq data with matching microarray data on the same patient samples to determine whether changes in pre-processing improved correlation between the two. We have developed a simple tool to remove low complexity regions, RepeatSoaker, available at https://github.com/mdozmorov/RepeatSoaker, and tested its effect on the alignment statistics and the results of the enrichment analyses. Results Both adapter trimming and duplicate removal moderately improved the strength of biological signals in RNA-seq and ChIP-seq data. Aggressive filtering of reads overlapping with low complexity regions, as defined by RepeatMasker, further improved the strength of biological signals, and the correlation between RNA-seq and microarray gene expression data. Conclusions Adapter trimming and duplicates removal, coupled with filtering out reads overlapping low complexity regions, is shown to increase the quality and reliability of detecting biological signals in RNA-seq and ChIP-seq data

    Machine Learning in Automated Text Categorization

    Full text link
    The automated categorization (or classification) of texts into predefined categories has witnessed a booming interest in the last ten years, due to the increased availability of documents in digital form and the ensuing need to organize them. In the research community the dominant approach to this problem is based on machine learning techniques: a general inductive process automatically builds a classifier by learning, from a set of preclassified documents, the characteristics of the categories. The advantages of this approach over the knowledge engineering approach (consisting in the manual definition of a classifier by domain experts) are a very good effectiveness, considerable savings in terms of expert manpower, and straightforward portability to different domains. This survey discusses the main approaches to text categorization that fall within the machine learning paradigm. We will discuss in detail issues pertaining to three different problems, namely document representation, classifier construction, and classifier evaluation.Comment: Accepted for publication on ACM Computing Survey

    A2BR Adenosine Receptor Modulates Sweet Taste in Circumvallate Taste Buds

    Get PDF
    In response to taste stimulation, taste buds release ATP, which activates ionotropic ATP receptors (P2X2/P2X3) on taste nerves as well as metabotropic (P2Y) purinergic receptors on taste bud cells. The action of the extracellular ATP is terminated by ectonucleotidases, ultimately generating adenosine, which itself can activate one or more G-protein coupled adenosine receptors: A1, A2A, A2B, and A3. Here we investigated the expression of adenosine receptors in mouse taste buds at both the nucleotide and protein expression levels. Of the adenosine receptors, only A2B receptor (A2BR) is expressed specifically in taste epithelia. Further, A2BR is expressed abundantly only in a subset of taste bud cells of posterior (circumvallate, foliate), but not anterior (fungiform, palate) taste fields in mice. Analysis of double-labeled tissue indicates that A2BR occurs on Type II taste bud cells that also express Gα14, which is present only in sweet-sensitive taste cells of the foliate and circumvallate papillae. Glossopharyngeal nerve recordings from A2BR knockout mice show significantly reduced responses to both sucrose and synthetic sweeteners, but normal responses to tastants representing other qualities. Thus, our study identified a novel regulator of sweet taste, the A2BR, which functions to potentiate sweet responses in posterior lingual taste fields

    Dynamic Evolution of Microscopic Wet Cracking Noises

    Get PDF
    Characterizing the interaction between water and microscopic defects is one of the long-standing challenges in understanding a broad range of cracking processes. Different physical aspects of microscopic events, driven or influenced by water, have been extensively discussed in atomistic calculations but have not been accessible in microscale experiments. Through the analysis of the emitted noises during the evolution of individual, dynamic microcracking events, we show that the onset of a secondary instability known as hybrid events occurs during the fast healing phase of microcracking, which leads to (local) sudden increase of pore water pressure in the process zone, inducing a secondary instability, which is followed by a fast-locking phase on the microscopic faults (pulse-like rupture)

    Interatomic Coulombic decay following the Auger decay: Experimental evidence in rare-gas dimers

    Get PDF
    Interatomic Coulombic decay (ICD) in Ar(2), ArKr and Kr(2) following Ar 2p or Kr 3d Auger decay has been investigated by means of momentum-resolved electron-ion-ion coincidence spectroscopy. This sequential decay leads to Coulombic dissociation into dication and monocation. Simultaneously determining the kinetic energy of the ICD electron and the kinetic energy release between the two atomic ions, we have been able to unambiguously identify the ICD channels. We find that, in general, spin-conserved ICD, in which the singlet (triplet) dicationic state produced via the atomic Auger decay preferentially decays to the singlet (triplet) state, transferring the energy to the other atom, is faster than spin-flip ICD, in which the Auger final singlet (triplet) dicationic state decays to the triplet (singlet) state. However, spin-flip ICD may take place when spin-conserved ICD becomes energetically forbidden. Dipole-forbidden ICDs from Kr(2+)(4s(-2) (1)S)-B (B = Ar or Kr) to Kr(2+)(4p(-2) (1)D, (3)P)-B(+) are also observed. (c) 2008 Elsevier B.V. All rights reserved
    corecore