12,657 research outputs found

    Coarse graining of master equations with fast and slow states

    Full text link
    We propose a general method for simplifying master equations by eliminating from the description rapidly evolving states. The physical recipe we impose is the suppression of these states and a renormalization of the rates of all the surviving states. In some cases, this decimation procedure can be analytically carried out and is consistent with other analytical approaches, like in the problem of the random walk in a double-well potential. We discuss the application of our method to nontrivial examples: diffusion in a lattice with defects and a model of an enzymatic reaction outside the steady state regime.Comment: 9 pages, 9 figures, final version (new subsection and many minor improvements

    Twisted geometries: A geometric parametrisation of SU(2) phase space

    Full text link
    A cornerstone of the loop quantum gravity program is the fact that the phase space of general relativity on a fixed graph can be described by a product of SU(2) cotangent bundles per edge. In this paper we show how to parametrize this phase space in terms of quantities describing the intrinsic and extrinsic geometry of the triangulation dual to the graph. These are defined by the assignment to each triangle of its area, the two unit normals as seen from the two polyhedra sharing it, and an additional angle related to the extrinsic curvature. These quantities do not define a Regge geometry, since they include extrinsic data, but a looser notion of discrete geometry which is twisted in the sense that it is locally well-defined, but the local patches lack a consistent gluing among each other. We give the Poisson brackets among the new variables, and exhibit a symplectomorphism which maps them into the Poisson brackets of loop gravity. The new parametrization has the advantage of a simple description of the gauge-invariant reduced phase space, which is given by a product of phase spaces associated to edges and vertices, and it also provides an abelianisation of the SU(2) connection. The results are relevant for the construction of coherent states, and as a byproduct, contribute to clarify the connection between loop gravity and its subset corresponding to Regge geometries.Comment: 28 pages. v2 and v3 minor change

    A Light Supersymmetric Axion in an Anomalous Abelian Extension of the Standard Model

    Full text link
    We present a supersymmetric extension of the Standard Model (USSM-A) with an anomalous U(1) and Stueckelberg axions for anomaly cancellation, generalizing similar non-supersymmetric constructions. The model, built by a bottom-up approach, is expected to capture the low-energy supersymmetric description of axionic symmetries in theories with gauged anomalous abelian interactions, previously explored in the non-supersymmetric case for scenarios with intersecting branes. The choice of a USSM-like superpotential, with one extra singlet superfield and an extra abelian symmetry, allows a physical axion-like particle in the spectrum. We describe some general features of this construction and in particular the modification of the dark-matter sector which involves both the axion and several neutralinos with an axino component. The axion is expected to be very light in the absence of phases in the superpotential but could acquire a mass which can also be in the few GeV range or larger. In particular, the gauging of the anomalous symmetry allows independent mass/coupling interaction to the gauge fields of this particle, a feature which is absent in traditional (invisible) axion models. We comment on the general implications of our study for the signature of moduli from string theory due to the presence of these anomalous symmetries.Comment: 46 pages, 28 figures. Revised version, accepted for a publication on Phys.Rev.

    Existence and uniqueness of the integrated density of states for Schr\"odinger operators with magnetic fields and unbounded random potentials

    Full text link
    The object of the present study is the integrated density of states of a quantum particle in multi-dimensional Euclidean space which is characterized by a Schr\"odinger operator with a constant magnetic field and a random potential which may be unbounded from above and from below. For an ergodic random potential satisfying a simple moment condition, we give a detailed proof that the infinite-volume limits of spatial eigenvalue concentrations of finite-volume operators with different boundary conditions exist almost surely. Since all these limits are shown to coincide with the expectation of the trace of the spatially localized spectral family of the infinite-volume operator, the integrated density of states is almost surely non-random and independent of the chosen boundary condition. Our proof of the independence of the boundary condition builds on and generalizes certain results by S. Doi, A. Iwatsuka and T. Mine [Math. Z. {\bf 237} (2001) 335-371] and S. Nakamura [J. Funct. Anal. {\bf 173} (2001) 136-152].Comment: This paper is a revised version of the first part of the first version of math-ph/0010013. For a revised version of the second part, see math-ph/0105046. To appear in Reviews in Mathematical Physic

    Decoherence induced by interacting quantum spin baths

    Full text link
    We study decoherence induced on a two-level system coupled to a one-dimensional quantum spin chain. We consider the cases where the dynamics of the chain is determined by the Ising, XY, or Heisenberg exchange Hamiltonian. This model of quantum baths can be of fundamental importance for the understanding of decoherence in open quantum systems, since it can be experimentally engineered by using atoms in optical lattices. As an example, here we show how to implement a pure dephasing model for a qubit system coupled to an interacting spin bath. We provide results that go beyond the case of a central spin coupled uniformly to all the spins of the bath, in particular showing what happens when the bath enters different phases, or becomes critical; we also study the dependence of the coherence loss on the number of bath spins to which the system is coupled and we describe a coupling-independent regime in which decoherence exhibits universal features, irrespective of the system-environment coupling strength. Finally, we establish a relation between decoherence and entanglement inside the bath. For the Ising and the XY models we are able to give an exact expression for the decay of coherences, while for the Heisenberg bath we resort to the numerical time-dependent Density Matrix Renormalization Group.Comment: 18 pages, 20 figure

    Matrix permanent and quantum entanglement of permutation invariant states

    Full text link
    We point out that a geometric measure of quantum entanglement is related to the matrix permanent when restricted to permutation invariant states. This connection allows us to interpret the permanent as an angle between vectors. By employing a recently introduced permanent inequality by Carlen, Loss and Lieb, we can prove explicit formulas of the geometric measure for permutation invariant basis states in a simple way.Comment: 10 page

    Theory of continuum percolation I. General formalism

    Full text link
    The theoretical basis of continuum percolation has changed greatly since its beginning as little more than an analogy with lattice systems. Nevertheless, there is yet no comprehensive theory of this field. A basis for such a theory is provided here with the introduction of the Potts fluid, a system of interacting ss-state spins which are free to move in the continuum. In the s→1s \to 1 limit, the Potts magnetization, susceptibility and correlation functions are directly related to the percolation probability, the mean cluster size and the pair-connectedness, respectively. Through the Hamiltonian formulation of the Potts fluid, the standard methods of statistical mechanics can therefore be used in the continuum percolation problem.Comment: 26 pages, Late

    Barbero-Immirzi field in canonical formalism of pure gravity

    Full text link
    The Barbero-Immirzi (BI) parameter is promoted to a field and a canonical analysis is performed when it is coupled with a Nieh-Yan topological invariant. It is shown that, in the effective theory, the BI field is a canonical pseudoscalar minimally coupled with gravity. This framework is argued to be more natural than the one of the usual Holst action. Potential consequences in relation with inflation and the quantum theory are briefly discussed.Comment: 10 page

    Estimates of the total gravitation radiation in the head-on black hole collision

    Full text link
    We report on calculations of the total gravitational energy radiated in the head-on black hole collision, where we use the geometry of the Robinson-Trautman metrics.Comment: 10 pages, 2 figures, LaTeX2

    The Importance of Satellite Quenching for the Build-Up of the Red Sequence of Present Day Galaxies

    Full text link
    In the current paradigm, red sequence galaxies are believed to have formed as blue disk galaxies that subsequently had their star formation quenched. Since red-sequence galaxies typically have an early-type morphology, the transition from the blue to the red sequence also involves a morphological transformation. In this paper we study the impact of transformation mechanisms that operate only on satellite galaxies, such as strangulation, ram-pressure stripping and galaxy harassment. Using a large galaxy group catalogue constructed from the SDSS, we compare the colors and concentrations of satellites galaxies to those of central galaxies of the same stellar mass, adopting the hypothesis that the latter are the progenitors of the former. On average, satellites are redder and more concentrated than central galaxies of the same stellar mass. Central-satellite pairs that are matched in both stellar mass and color, however, show no average concentration difference, indicating that the transformation mechanisms affect color more than morphology. The color and concentration differences of matched central-satellite pairs are completely independent of the halo mass of the satellite galaxy, indicating that satellite-specific transformation mechanisms are equally efficient in haloes of all masses. This strongly favors strangulation as the main quenching mechanism for satellite galaxies. Finally, we determine the relative importance of satellite quenching for the build-up of the red sequence. We find that roughly 70 percent of red sequence satellite galaxies with a stellar mass of 10^9 Msun had their star formation quenched as satellites. This drops rapidly to zero with increasing stellar mass, indicating that a significant fraction of red satellites were already quenched before they became a satellite.Comment: 14 pages, 10 figures. Submitted for publication in MNRA
    • …
    corecore