8,149 research outputs found

    The Embedded Neuron, the Enactive Field?

    Get PDF
    The concept of the receptive field, first articulated by Hartline, is central to visual neuroscience. The receptive field of a neuron encompasses the spatial and temporal properties of stimuli that activate the neuron, and, as Hubel and Wiesel conceived of it, a neuron’s receptive field is static. This makes it possible to build models of neural circuits and to build up more complex receptive fields out of simpler ones. Recent work in visual neurophysiology is providing evidence that the classical receptive field is an inaccurate picture. The receptive field seems to be a dynamic feature of the neuron. In particular, the receptive field of neurons in V1 seems to be dependent on the properties of the stimulus. In this paper, we review the history of the concept of the receptive field and the problematic data. We then consider a number of possible theoretical responses to these data

    Seed populations for large solar particle events of cycle 23

    Get PDF
    Using high-resolution mass spectrometers on board the Advanced Composition Explorer (ACE), we surveyed the event-averaged ~0.1-60 MeV/nuc heavy ion elemental composition in 64 large solar energetic particle (LSEP) events of cycle 23. Our results show the following: (1) The rare isotope ^3He is greatly enhanced over the corona or the solar wind values in 46% of the events. (2) The Fe/O ratio decreases with increasing energy up to ~10 MeV/nuc in ~92% of the events and up to ~60 MeV/nuc in ~64% of the events. (3) Heavy ion abundances from C-Fe exhibit systematic M/g-dependent enhancements that are remarkably similar to those seen in ^3He-rich SEP events and CME-driven interplanetary (IP) shock events. Taken together, these results confirm the role of shocks in energizing particles up to ~60 MeV/nuc in the majority of large SEP events of cycle 23, but also show that the seed population is not dominated by ions originating from the ambient corona or the thermal solar wind, as previously believed. Rather, it appears that the source material for CME-associated large SEP events originates predominantly from a suprathermal population with a heavy ion enrichment pattern that is organized according to the ion's mass-per-charge ratio. These new results indicate that current LSEP models must include the routine production of this dynamic suprathermal seed population as a critical pre-cursor to the CME shock acceleration process

    Normative Evidence Accumulation in Unpredictable Environments

    Get PDF
    In our dynamic world, decisions about noisy stimuli can require temporal accumulation of evidence to identify steady signals, differentiation to detect unpredictable changes in those signals, or both. Normative models can account for learning in these environments but have not yet been applied to faster decision processes. We present a novel, normative formulation of adaptive learning models that forms decisions by acting as a leaky accumulator with non-absorbing bounds. These dynamics, derived for both discrete and continuous cases, depend on the expected rate of change of the statistics of the evidence and balance signal identification and change detection. We found that, for two different tasks, human subjects learned these expectations, albeit imperfectly, then used them to make decisions in accordance with the normative model. The results represent a unified, empirically supported account of decision-making in unpredictable environments that provides new insights into the expectation-driven dynamics of the underlying neural signals

    Acute hypoglycemia impairs executive cognitive function in adults with and without type 1 diabetes

    Get PDF
    OBJECTIVE: Acute hypoglycemia impairs cognitive function in several domains. Executive cognitive function governs organization of thoughts, prioritization of tasks, and time management. This study examined the effect of acute hypoglycemia on executive function in adults with and without diabetes. RESEARCH DESIGN AND METHODS: Thirty-two adults with and without type 1 diabetes with no vascular complications or impaired awareness of hypoglycemia were studied. Two hyperinsulinemic glucose clamps were performed at least 2 weeks apart in a single-blind, counterbalanced order, maintaining blood glucose at 4.5 mmol/L (euglycemia) or 2.5 mmol/L (hypoglycemia). Executive functions were assessed with a validated test suite (Delis-Kaplan Executive Function). A general linear model (repeated-measures ANOVA) was used. Glycemic condition (euglycemia or hypoglycemia) was the within-participant factor. Between-participant factors were order of session (euglycemia-hypoglycemia or hypoglycemia-euglycemia), test battery used, and diabetes status (with or without diabetes). RESULTS: Compared with euglycemia, executive functions (with one exception) were significantly impaired during hypoglycemia; lower test scores were recorded with more time required for completion. Large Cohen d values (>0.8) suggest that hypoglycemia induces decrements in aspects of executive function with large effect sizes. In some tests, the performance of participants with diabetes was more impaired than those without diabetes. CONCLUSIONS: Executive cognitive function, which is necessary to carry out many everyday activities, is impaired during hypoglycemia in adults with and without type 1 diabetes. This important aspect of cognition has not received previous systematic study with respect to hypoglycemia. The effect size is large in terms of both accuracy and speed

    To Act and Learn: A Bakhtinian Exploration of Action Learning

    Get PDF
    This paper considers the work of the Russian social philosopher and cultural theorist, Mikhail Mikhailovich Bakhtin as a source of understanding for those involved in action learning. Drawing upon data gathered over two years during the evaluation of 20 action learning sets in the north of England, we will seek to work with the ideas of Bakhtin to consider their value for those involved in action learning. We consider key Bakhtin features such as Making Meaning, Participative Thinking, Theoreticism and Presence, Others and Outsideness, Voices and Carnival to highlight how Bakhtin's can enhance our understanding of the nature of action and learning

    Homomeric Q/R edited AMPA receptors conduct when desensitized

    Get PDF
    Desensitization is a canonical property of ligand-gated ion channels, causing progressive current decline in the continued presence of agonist. AMPA-type glutamate receptors, which mediate fast excitatory signaling throughout the brain, exhibit profound desensitization. Recent cryo-EM studies of AMPAR assemblies show their ion channels to be closed in the desensitized state. Here we report the surprising finding that homomeric Q/R edited AMPARs still allow ions to flow when the receptors are desensitized. GluA2(R) expressed alone, or with auxiliary subunits (γ-2, γ-8 or GSG1L), generates large steady-state currents and anomalous current-variance relationships. Using fluctuation analysis, single-channel recording, and kinetic modeling we demonstrate that the steady-state current is mediated predominantly by ‘conducting desensitized’ receptors. When combined with crystallography this unique functional readout of a hith-erto silent state enabled us to examine cross-linked cysteine mutants to probe the conformation of the desensitized ligand binding domain of functioning AMPAR complexes within the plasma membrane

    Progression of myopathology in Kearns-Sayre syndrome

    Get PDF
    We report on the progression of myopathology by comparing two biopsies from a patient with a Kearns-Sayre-Syndrome. The first biopsy was taken in 1979 and showed 10% ragged-red fibers. Myopathic changes were slight including internal nuclei and fiber splitting in 10% of the fibers. Electron microscopy revealed typical mitochondrial abnormalities with regard to number and shape. In 1989 a second biopsy was performed for an extended analysis of mitochondrial DNA. This time less than 5% of all fibers were ragged-red. Severe myopathic changes could be detected which so far has rarely been reported in mitochondrial cytopathy

    Topology and structure/function correlation of ring- and gate-forming domains in the dynamic secretin complex of Thermus thermophilus.

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Secretins are versatile outer membrane pores used by many bacteria to secrete proteins, toxins, or filamentous phages; extrude type IV pili (T4P); or take up DNA. Extrusion of T4P and natural transformation of DNA in the thermophilic bacterium Thermus thermophilus requires a unique secretin complex comprising six stacked rings, a membrane-embedded cone structure, and two gates that open and close a central channel. To investigate the role of distinct domains in ring and gate formation, we examined a set of deletion derivatives by cryomicroscopy techniques. Here we report that maintaining the N0 ring in the deletion derivatives led to stable PilQ complexes. Analyses of the variants unraveled that an N-terminal domain comprising a unique βββαβ fold is essential for the formation of gate 2. Furthermore, we identified four βαββα domains essential for the formation of the N2 to N5 rings. Mutant studies revealed that deletion of individual ring domains significantly reduces piliation. The N1, N2, N4, and N5 deletion mutants were significantly impaired in T4P-mediated twitching motility, whereas the motility of the N3 mutant was comparable with that of wild-type cells. This indicates that the deletion of the N3 ring leads to increased pilus dynamics, thereby compensating for the reduced number of pili of the N3 mutant. All mutants exhibit a wild-type natural transformation phenotype, leading to the conclusion that DNA uptake is independent of functional T4P.This work was supported by Deutsche Forschungsgemeinschaft Grant AV 9/6-1. The authors declare that they have no conflicts of interest with the contents of this article

    Abundances and energy spectra of corotating interaction region heavy ions

    Get PDF
    We have surveyed He-Fe spectra for 41 Corotating Interaction Regions (CIRs) from 1998–2007 observed on ACE. The spectra are similar for all species, and have the form of broken power laws with the spectral break occurring at a few MeV/nucleon. Except for overabundances of He and Ne, the abundances are close to those of the solar wind. We find the rare isotope ^3He is enhanced in ~40% of the events. In individual CIRs the Fe/O ratio correlates strongly with the solar wind Fe/O ratio measured 2–4 days prior to the CIR passage. Taken together with previously reported observations of pick-up He^+ in CIRs, these observations provide evidence that CIRs are accelerated out of a suprathermal ion pool of heated solar wind ions, pick-up ions, and remnant suprathermal ions from impulsive solar energetic particle (SEP) events
    • …
    corecore