11 research outputs found

    Optimized testing strategy for the diagnosis of GAA-FGF14 ataxia/spinocerebellar ataxia 27B

    Get PDF
    Dominantly inherited GAA repeat expansions in FGF14 are a common cause of spinocerebellar ataxia (GAA-FGF14 ataxia; spinocerebellar ataxia 27B). Molecular confirmation of FGF14 GAA repeat expansions has thus far mostly relied on long-read sequencing, a technology that is not yet widely available in clinical laboratories. We developed and validated a strategy to detect FGF14 GAA repeat expansions using long-range PCR, bidirectional repeat-primed PCRs, and Sanger sequencing. We compared this strategy to targeted nanopore sequencing in a cohort of 22 French Canadian patients and next validated it in a cohort of 53 French index patients with unsolved ataxia. Method comparison showed that capillary electrophoresis of long-range PCR amplification products significantly underestimated expansion sizes compared to nanopore sequencing (slope, 0.87 [95% CI, 0.81 to 0.93]; intercept, 14.58 [95% CI, − 2.48 to 31.12]) and gel electrophoresis (slope, 0.84 [95% CI, 0.78 to 0.97]; intercept, 21.34 [95% CI, − 27.66 to 40.22]). The latter techniques yielded similar size estimates. Following calibration with internal controls, expansion size estimates were similar between capillary electrophoresis and nanopore sequencing (slope: 0.98 [95% CI, 0.92 to 1.04]; intercept: 10.62 [95% CI, − 7.49 to 27.71]), and gel electrophoresis (slope: 0.94 [95% CI, 0.88 to 1.09]; intercept: 18.81 [95% CI, − 41.93 to 39.15]). Diagnosis was accurately confirmed for all 22 French Canadian patients using this strategy. We also identified 9 French patients (9/53; 17%) and 2 of their relatives who carried an FGF14 (GAA)≥250 expansion. This novel strategy reliably detected and sized FGF14 GAA expansions, and compared favorably to long-read sequencing

    Co-Combustion of Dried Sewage Sludge and Coal The Fate of Heavy Metals

    No full text
    The fate of some selected heavy metals has been investigated during co-combustion of sewage sludge and coal in two fluidised bed combustors: the 12MWth circulating fluidized bed (CFB) boiler at CTH and the laboratory scale unit at IVD. The total and species balances were, in general, fairly well closed, and the increased amounts of heavy metals originating from the input sludge were also found in the exit flows. Volatile species such as Hg and Cd are sensitive to the temperature conditions. Thus, almost no mercury was found in the bottom ash, and a cyclone at 350 \ub0C captured little Hg in comparison to a cyclone and filters at 150 \ub0C. The high particle loading in a CFB appears to contribute essentially to the reduction of the flue gas mercury concentration; the emission is reduced by orders of magnitude compared to a plant with low particle concentration. In most cases investigated the emissions of heavy metals were below the limits related to co-combustion set by the European Union

    Toxicity of TiO2 Nanoparticles: Validation of Alternative Models

    No full text
    There are many studies concerning titanium dioxide (TiO2) nanoparticles (NP) toxicity. Nevertheless, there are few publications comparing in vitro and in vivo exposure, and even less comparing air–liquid interface exposure (ALI) with other in vitro and in vivo exposures. The identification and validation of common markers under different exposure conditions are relevant for the development of smart and quick nanotoxicity tests. In this work, cell viability was assessed in vitro by WST-1 and LDH assays after the exposure of NR8383 cells to TiO2 NP sample. To evaluate in vitro gene expression profile, NR8383 cells were exposed to TiO2 NP during 4 h at 3 cm2 of TiO2 NP/cm2 of cells or 19 μg/mL, in two settings—submerged cultures and ALI. For the in vivo study, Fischer 344 rats were exposed by inhalation to a nanostructured aerosol at a concentration of 10 mg/m3, 6 h/day, 5 days/week for 4 weeks. This was followed immediately by gene expression analysis. The results showed a low cytotoxic potential of TiO2 NP on NR8383 cells. Despite the absence of toxicity at the doses studied, the different exposures to TiO2 NP induce 18 common differentially expressed genes (DEG) which are involved in mitosis regulation, cell proliferation and apoptosis and inflammation transport of membrane proteins. Among these genes, we noticed the upregulation of Ccl4, Osm, Ccl7 and Bcl3 genes which could be suggested as early response biomarkers after exposure to TiO2 NP. On the other hand, the comparison of the three models helped us to validate the alternative ones, namely submerged and ALI approaches

    Probing the solvent-induced tautomerism of a redox-active ureidopyrimidinone

    No full text
    Trimethylammonium functionalized gold nanoparticles are demonstrated as templates for the assembly of peptide fragments and their subsequently promoted ligation. This system displays the use of organically tailored nanoparticles as effective supramolecular reagents for catalyzing bond-forming reactions and may also serve as a model for prebiotic conditions where charged surfaces may have promoted the polymerization of the early biopolymers
    corecore