344 research outputs found

    Size of hippocampal pyramidal neurons in schizophrenia

    Get PDF
    Background Meta-analyses of hippocampal size have indicated thatthis structure is smaller in schizophrenia.This could reflect a reductioninthe size of constituent neurons or a reduced number of neurons. Aims To measure the size of hippocampalpyramidalneuronsinthe hippocampalpyramidalneurons inthe brains of peoplewith andwithout schizophrenia. Method Pyramidalneuron size in hippocampal subfieldswas estimated stereologically fromsections taken at 5mmintervals throughoutthewhole length of right and left hippocampi from andleft the brains of13 peoplewith schizophrenia and16 controls.Resultswere assessed using repeated-measures analysis of covariance looking for amain effectof diagnosis and gender, andinteractions of and interactions thesewith side. Results Wewere unable to detect significantdifferences related to diagnosis, gender or side for any hippocampal subfield for this series of cases. Conclusions For this series of brains, hippocampal cell size is unchangedin schizophrenia

    A phase II study of capecitabine and oxalplatin combination chemotherapy in patients with inoperable adenocarcinoma of the gall bladder or biliary tract

    Get PDF
    Background: Advanced biliary tract carcinomas are associated with a poor prognosis, and palliative chemotherapy has only modest benefit. This multi-centre phase II study was conducted to determine the efficacy of capecitabine in combination with oxaliplatin in patients with inoperable gall bladder or biliary tract cancer. Methods: This was a Phase II, non-randomised, two-stage Simon design, multi-centre study. Ethics approval was sought and obtained by the North West MREC, and then locally by the West Glasgow Hospitals Research Ethics Com mittee. Eligible patients with inoperable locally advanced or metastatic adenocarcinoma of the gall bladder or biliary tract and with adequate performance status, haematologic, renal, and hepatic function were treated with capecit abine (1000 mg/m2 po, twice daily, days 1ā€“14) and oxaliplatin (130 mg/m2 i.v., day 1) every 3 weeks for up to six cycles. The primary objective of the study was to determine the objective tumour response rates (complete and partial). The secondary objectives included assessment of toxicity, progression-free survival, and overall survival. Results: Forty-three patients were recruited between July 2003 and December 2005. The regimen was well tolerated with no grade 3/4 neutropenia or thrombocytopenia. Grade 3/4 sensory neuropathy was observed in six patients. Two-thirds of patients received their chemotherapy without any dose delays. Overall response rate was 23.8 % (95 % CI 12.05ā€“39.5 %). Stable disease was observed in a further 13 patients (31 %) and progressive disease observed in 12 (28.6 %) of patients. The median progression-free survival was 4.6 months (95 % CI 2.8ā€“6.4 months; Fig. 1) and the median overall survival 7.9 months (95 % CI 5.3ā€“10.4 months; Fig. 2). Conclusion: Capecitabine combined with oxaliplatin has a lower disease control and shorter overall survival than the combination of cisplatin with gemcitabine which has subsequently become the standard of care in this disease. How ever, capecitabine in combination with oxaliplatin does have modest activity in this disease, and can be considered as an alternative treatment option for patients in whom cisplatin and/or gemcitabine are contra-indicated

    Local volume fraction distributions of axons, astrocytes, and myelin in deep subcortical white matter

    Get PDF
    This study aims to statistically describe histologically stained white matter brain sections to subsequently inform and validate diffusion MRI techniques. For the first time, we characterise volume fraction distributions of three of the main structures in deep subcortical white matter (axons, astrocytes, and myelinated axons) in a representative cohort of an ageing population for which well-characterized neuropathology data is available. We analysed a set of samples from 90 subjects of the Cognitive Function and Ageing Study (CFAS), stratified into three groups of 30 subjects each, in relation to the presence of age-associated deep subcortical lesions. This provides volume fraction distributions in different scenarios relevant to brain diffusion MRI in dementia. We also assess statistically significant differences found between these groups. In agreement with previous literature, our results indicate that white matter lesions are related with a decrease in the myelinated axons fraction and an increase in astrocytic fraction, while no statistically significant changes occur in axonal mean fraction. In addition, we introduced a framework to quantify volume fraction distributions from 2D immunohistochemistry images, which is validated against in silico simulations. Since a trade-off between precision and resolution emerged, we also performed an assessment of the optimal scale for computing such distributions

    One-Step Generation of Multifunctional Polyelectrolyte Microcapsules via Nanoscale Interfacial Complexation in Emulsion (NICE)

    Get PDF
    Polyelectrolyte microcapsules represent versatile stimuli-responsive structures that enable the encapsulation, protection, and release of active agents. Their conventional preparation methods, however, tend to be time-consuming, yield low encapsulation efficiency, and seldom allow for the dual incorporation of hydrophilic and hydrophobic materials, limiting their widespread utilization. In this work, we present a method to fabricate stimuli-responsive polyelectrolyte microcapsules in one step based on nanoscale interfacial complexation in emulsions (NICE) followed by spontaneous droplet hatching. NICE microcapsules can incorporate both hydrophilic and hydrophobic materials and also can be induced to trigger the release of encapsulated materials by changes in the solution pH or ionic strength. We also show that NICE microcapsules can be functionalized with nanomaterials to exhibit useful functionality, such as response to a magnetic field and disassembly in response to light. NICE represents a potentially transformative method to prepare multifunctional nanoengineered polyelectrolyte microcapsules for various applications such as drug delivery and cell mimicry.112823Ysciescopu

    Proteinopathies as hallmarks of impaired gene expression, proteostasis and mitochondrial function in amyotrophic lateral sclerosis

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset neurodegenerative disease characterized by progressive degeneration of upper and lower motor neurons. As with the majority of neurodegenerative diseases, the pathological hallmarks of ALS involve proteinopathies which lead to the formation of various polyubiquitylated protein aggregates in neurons and glia. ALS is a highly heterogeneous disease, with both familial and sporadic forms arising from the convergence of multiple disease mechanisms, many of which remain elusive. There has been considerable research effort invested into exploring these disease mechanisms and in recent years dysregulation of RNA metabolism and mitochondrial function have emerged as of crucial importance to the onset and development of ALS proteinopathies. Widespread alterations of the RNA metabolism and post-translational processing of proteins lead to the disruption of multiple biological pathways. Abnormal mitochondrial structure, impaired ATP production, dysregulation of energy metabolism and calcium homeostasis as well as apoptosis have been implicated in the neurodegenerative process. Dysfunctional mitochondria further accumulate in ALS motor neurons and reflect a wider failure of cellular quality control systems, including mitophagy and other autophagic processes. Here, we review the evidence for RNA and mitochondrial dysfunction as some of the earliest critical pathophysiological events leading to the development of ALS proteinopathies, explore their relative pathological contributions and their points of convergence with other key disease mechanisms. This review will focus primarily on mutations in genes causing four major types of ALS (C9ORF72, SOD1, TARDBP/TDP-43, and FUS) and in protein homeostasis genes (SQSTM1, OPTN, VCP, and UBQLN2) as well as sporadic forms of the disease. Finally, we will look to the future of ALS research and how an improved understanding of central mechanisms underpinning proteinopathies might inform research directions and have implications for the development of novel therapeutic approaches

    Neuropathological characterisation of a novel TBK1 loss of function mutation associated with amyotrophic lateral sclerosis

    Get PDF
    Mutations in TANK binding kinase gene (TBK1) have been identified as causative in amyotrophic lateral sclerosis (ALS). Here, we examine the spectrum of TBK1 mutations in a cohort of ALS patients from Northern England, comparing missense and loss of function mutations with clinical phenotype. Analysis of 290 ALS cases identified seven variants, including one novel in-frame deletion (p.Ile85del). In silico analysis and review of the literature suggested that four variants, one nonsense mutation (p.Glu2Ter), two in-frame deletions (p.Ile85del, p.Glu643del) and one missense mutation (p.Gln565Pro) were pathogenic, whilst the remaining three missense mutations were variants of uncertain significance or benign. Post-mortem material was available from the patient with the novel in-frame deletion. Neuropathological examination established this individual had classical ALS pathology, with moderate phosphorylated TDP-43 neuronal and glial cytoplasmic inclusions in the motor cortex, skein-like inclusions in the lower motor neurons and ā€œpre-inclusionsā€ in the medulla. This corresponds to Type B FTLD-TDP pathology and is consistent with previously published literature on TBK1 mutants. In addition to demonstrating no changes in TBK1 staining, we are the first to show there was no differential expression of interferon regulatory factor IRF3, a downstream effector of TBK1 in the innate immunity pathway, in the TBK1-mutant tissue compared to controls. Comparison of clinical and neuropathological data, however, suggests that TBK1-ALS cases show classical ALS pathology but no specific phenotype

    Broad clinical phenotypes associated with TAR-DNA binding protein (TARDBP) mutations in amyotrophic lateral sclerosis

    Get PDF
    The finding of TDP-43 as a major component of ubiquitinated protein inclusions in amyotrophic lateral sclerosis (ALS) has led to the identification of 30 mutations in the transactive response-DNA binding protein (TARDBP) gene, encoding TDP-43. All but one are in exon 6, which encodes the glycine-rich domain. The aim of this study was to determine the frequency of TARDBP mutations in a large cohort of motor neurone disease patients from Northern England (42 non-superoxide dismutase 1 (SOD1) familial ALS (FALS), nine ALS-frontotemporal dementia, 474 sporadic ALS (SALS), 45 progressive muscular atrophy cases). We identified four mutations, two of which were novel, in two familial (FALS) and two sporadic (SALS) cases, giving a frequency of TARDBP mutations in non-SOD1 FALS of 5% and SALS of 0.4%. Analysis of clinical data identified that patients had typical ALS, with limb or bulbar onset, and showed considerable variation in age of onset and rapidity of disease course. However, all cases had an absence of clinically overt cognitive dysfunction

    Decrease of pro-angiogenic monocytes predicts clinical response to anti-angiogenic treatment in patients with metastatic renal cell carcinoma

    Get PDF
    The modulation of subpopulations of pro-angiogenic monocytes (VEGFR-1+ CD14 and Tie2+ CD14) was analyzed in an ancillary study from the prospective PazopanIb versus Sunitinib patient preferenCE Study (PISCES) (NCT01064310), where metastatic renal cell carcinoma (mRCC) patients were treated with two anti-angiogenic drugs, either sunitinib or pazopanib. Blood samples from 86 patients were collected prospectively at baseline (T1), and at 10 weeks (T2) and 20 weeks (T3) after starting anti-angiogenic therapy. Various subpopulations of myeloid cells (monocytes, VEGFR-1+ CD14 and Tie2+ CD14 cells) decreased during treatment. When patients were divided into two subgroups with a decrease (defined as a >20% reduction from baseline value) (group 1) or not (group 2) at T3 for VEGFR-1+ CD14 cells, group 1 patients presented a median PFS and OS of 24 months and 37 months, respectively, compared with a median PFS of 9 months (p = 0.032) and a median OS of 16 months (p = 0.033) in group 2 patients. The reduction in Tie2+ CD14 at T3 predicted a benefit in OS at 18 months after therapy (p = 0.04). In conclusion, in this prospective clinical trial, a significant decrease in subpopulations of pro-angiogenic monocytes was associated with clinical response to anti-angiogenic drugs in patients with mRCC
    • ā€¦
    corecore