804 research outputs found
Are Dutch Skylarks partial migrants? Ring recovery data and radio-telemetry suggest local coexistence of contrasting migration strategies
In recent years, Skylarks Alauda arvensis have undergone dramatic population declines in many European countries. Evidence exists for deteriorating conditions during the breeding season, but little is known about the situation during the rest of the annual cycle. Here we use two approaches to test if the Dutch breeding population of Skylarks consists of resident and/or migratory individuals. First, we present an analysis of ring recoveries from the Dutch Ringing Centre "Vogeltrekstation". Out of 25 recoveries, 12 Skylarks were resident in winter, 10 migrated and three were classified as probable migrants. Resident birds were accompanied during winter by birds from northern and eastern Europe. Very limited natal and breeding dispersal recorded in the same dataset suggests that our results were not influenced by long dispersal distances. Next, we compared these results to a local radio-telemetry study in the northern Netherlands. During two different years we equipped a total of 27 Skylarks from a breeding population with radio-transmitters and followed them during the subsequent winter. Four birds were found to winter locally. Out of 23 individuals that we did not find in winter, 14 returned in the following breeding season to the study area, all with a working transmitter, suggesting that they wintered outside our study area. Two ring recoveries of birds from the same study population indeed showed migration to south-west Europe. Based on these two lines of evidence, we conclude local coexistence of a resident and a migrant strategy in Dutch Skylarks. The findings of our study are important for the planning of conservation efforts, as we can only protect this rapidly declining species when we know their behaviour and whereabouts throughout the entire annual cycle
Error Resilient Quantum Amplitude Estimation from Parallel Quantum Phase Estimation
We show how phase and amplitude estimation algorithms can be parallelized.
This can reduce the gate depth of the quantum circuits to that of a single
Grover operator with a small overhead. Further, we show that for quantum
amplitude estimation, the parallelization can lead to vast improvements in
resilience against quantum errors. The resilience is not caused by the lower
gate depth, but by the structure of the algorithm. Even in cases with errors
that make it impossible to read out the exact or approximate solutions from
conventional amplitude estimation, our parallel approach provided the correct
solution with high probability. The results on error resilience hold for the
standard version and for low depth versions of quantum amplitude estimation.
Methods presented are subject of a patent application [Quantum computing
device: Patent application EP 21207022.1]
Speckle-tracking echocardiography combined with imaging mass spectrometry assesses region-dependent alterations
Left ventricular (LV) contraction is characterized by shortening and thickening of longitudinal and circumferential fibres. To date, it is poorly understood how LV deformation is altered in the pathogenesis of streptozotocin (STZ)-induced type 1 diabetes mellitus-associated diabetic cardiomyopathy and how this is associated with changes in cardiac structural composition. To gain further insights in these LV alterations, eight-week-old C57BL6/j mice were intraperitoneally injected with 50 mg/kg body weight STZ during 5 consecutive days. Six, 9, and 12 weeks (w) post injections, echocardiographic analysis was performed using a Vevo 3100 device coupled to a 30-MHz linear-frequency transducer. Speckle-tracking echocardiography (STE) demonstrated impaired global longitudinal peak strain (GLS) in STZ versus control mice at all time points. 9w STZ animals displayed an impaired global circumferential peak strain (GCS) versus 6w and 12w STZ mice. They further exhibited decreased myocardial deformation behaviour of the anterior and posterior base versus controls, which was paralleled with an elevated collagen I/III protein ratio. Additionally, hypothesis-free proteome analysis by imaging mass spectrometry (IMS) identified regional- and time-dependent changes of proteins affecting sarcomere mechanics between STZ and control mice. In conclusion, STZ-induced diabetic cardiomyopathy changes global cardiac deformation associated with alterations in cardiac sarcomere proteins
The effect of alcohol on cervical and ocular vestibular evoked myogenic potentials in healthy volunteers
OBJECTIVE: We investigated the effect of alcohol on the cervical and ocular vestibular evoked myogenic potentials (cVEMPs and oVEMPs). As alcohol produces gaze-evoked nystagmus (GEN), we also tested the effect of nystagmus independent of alcohol by recording oVEMPs during optokinetic stimulation (OKS).
METHODS: The effect of alcohol was tested in 14 subjects over multiple rounds of alcohol consumption up to a maximum breath alcohol concentration (BrAC) of 1.5‰ (mean 0.97‰). The effect of OKS was tested in 11 subjects at 5, 10 and 15deg/sec.
RESULTS: oVEMP amplitude decreased from baseline to the highest BrAC level by 27% (range 5-50%, P<0.001), but there was no significant effect on oVEMP latency or cVEMP amplitude or latency. There was a significant negative effect of OKS on oVEMP amplitude (16%, P=0.006).
CONCLUSIONS: We found a selective effect of alcohol on oVEMP amplitude, but no effect on the cVEMP. Vertical nystagmus elicited by OKS reduced oVEMP amplitude.
SIGNIFICANCE: Alcohol selectively affects oVEMP amplitude. Despite the effects of alcohol and nystagmus, both reflexes were reliably recorded in all subjects and conditions. An absent response in a patient affected by alcohol or nystagmus indicates a vestibular deficit
Quantum amplitude estimation with error mitigation for time-evolving probabilistic networks
We present a method to model a discretized time evolution of probabilistic
networks on gate-based quantum computers. We consider networks of nodes, where
each node can be in one of two states: good or failed. In each time step,
probabilities are assigned for each node to fail (switch from good to failed)
or to recover (switch from failed to good). Furthermore, probabilities are
assigned for failing nodes to trigger the failure of other, good nodes. Our
method can evaluate arbitrary network topologies for any number of time steps.
We can therefore model events such as cascaded failure and avalanche effects
which are inherent to financial networks, payment and supply chain networks,
power grids, telecommunication networks and others. Using quantum amplitude
estimation techniques, we are able to estimate the probability of any
configuration for any set of nodes over time. This allows us, for example, to
determine the probability of the first node to be in the good state after the
last time step, without the necessity to track intermediate states. We present
the results of a low-depth quantum amplitude estimation on a simulator with a
realistic noise model. We also present the results for running this example on
the AQT quantum computer system PINE. Finally, we introduce an error model that
allows us to improve the results from the simulator and from the experiments on
the PINE system
'Brain Circulation' – Diaspora als treibende Kraft bei der Entwicklung der Herkunftsländer:Seminar "Brain Drain und Brain Gain. Migration und Entwicklung"
Seit Beginn des 21. Jahrhunderts hat die Diskussion über den Zusammenhang von Migration und Entwicklung eine neue Richtung bekommen. Wurde die Emigration von Hochqualifizierten aus Entwicklungsländern bislang zumeist als ein abgeschlossener Prozess gesehen, der für die Abgabeländer in einem Humankapitalverlust (brain drain) und für die Aufnahmeländer (meistenteils Industrieländer) in einem Humankapitalgewinn (brain gain) resultiert, so wird Elitenmigration heute mehr und mehr als ein zirkulärer Prozess der Hin- und Her- bzw. Weiterwanderung angesehen (brain circulation), von dem nicht nur Industrieländer, sondern potentiell auch Entwicklungsländer profitieren können.
Alle hier veröffentlichten Arbeiten des Politikwissenschaftsseminars "Brain Drain und Brain Gain. Migration und Entwicklung" unter Leitung von Prof. Thränhardt und Dr. Uwe Hunger aus dem Sommersemester 2005 stellen originäre und eigenständige Forschungsarbeiten dar und tragen durch ihre sorgfältige Recherche dazu bei, weitere neue, wichtige Erkenntnisse für diese immer noch junge Forschungsrichtung zusammenzutragen. Die eigenständigen Arbeiten der Studierenden behandeln ein Thema, das sich in der Forschung gerade durchzusetzen beginnt und Lösungsansätze für die Probleme einer globalisierten und zusammenwachsenden Welt öffnet
Ethanol consumption impairs vestibulo-ocular reflex function measured by the video head impulse test and dynamic visual acuity
Ethanol affects many parts of the nervous system, from the periphery to higher cognitive functions. Due to the established effects of ethanol on vestibular and oculomotor function, we wished to examine its effect on two new tests of the vestibulo-ocular reflex (VOR): the video head impulse test (vHIT) and dynamic visual acuity (DVA). We tested eight healthy subjects with no history of vestibular disease after consumption of standardized drinks of 40% ethanol. We used a repeated measures design to track vestibular function over multiple rounds of ethanol consumption up to a maximum breath alcohol concentration (BrAC) of 1.38‰. All tests were normal at baseline. VOR gain measured by vHIT decreased 25% by the highest BrAC level tested in each subject. Catch-up saccades were negligible at baseline and increased in number and size with increasing ethanol consumption (from 0.13° to 1.43° cumulative amplitude per trial). DVA scores increased by 86% indicating a deterioration of acuity, while static visual acuity (SVA) remained unchanged. Ethanol consumption systematically impaired the VOR evoked by high-acceleration head impulses and led to a functional loss of visual acuity during head movement.NHMR
Oxidative Stress and Inflammatory Modulation of Ca2+ Handling in Metabolic HFpEF-Related Left Atrial Cardiomyopathy
Metabolic syndrome-mediated heart failure with preserved ejection fraction (HFpEF) is commonly accompanied by left atrial (LA) cardiomyopathy, significantly affecting morbidity and mortality. We evaluate the role of reactive oxygen species (ROS) and intrinsic inflammation (TNF-α, IL-10) related to dysfunctional Ca2+ homeostasis of LA cardiomyocytes in a rat model of metabolic HFpEF. ZFS-1 obese rats showed features of HFpEF and atrial cardiomyopathy in vivo: increased left ventricular (LV) mass, E/e' and LA size and preserved LV ejection fraction. In vitro, LA cardiomyocytes exhibited more mitochondrial-fission (MitoTracker) and ROS-production (H2DCF). In wildtype (WT), pro-inflammatory TNF-α impaired cellular Ca2+ homeostasis, while anti-inflammatory IL-10 had no notable effect (confocal microscopy; Fluo-4). In HFpEF, TNF-α had no effect on Ca2+ homeostasis associated with decreased TNF-α receptor expression (western blot). In addition, IL-10 substantially improved Ca2+ release and reuptake, while IL-10 receptor-1 expression was unaltered. Oxidative stress in metabolic syndrome mediated LA cardiomyopathy was increased and anti-inflammatory treatment positively affected dysfunctional Ca2+ homeostasis. Our data indicates, that patients with HFpEF-related LA dysfunction might profit from IL-10 targeted therapy, which should be further explored in preclinical trials
No downregulation of immune function during breeding in two year-round breeding bird species in an equatorial East African environment
Some equatorial environments exhibit substantial within-location variation in environmental conditions throughout the year and yet have year-round breeding birds. This implies that breeding in such systems are potentially unrelated to the variable environmental conditions. By breeding not being influenced by environmental conditions, we become sure that any differences in immune function between breeding and non-breeding birds do not result from environmental variation, therefore allowing for exclusion of the confounding effect of variation in environmental conditions. This create a unique opportunity to test if immune function is down-regulated during reproduction compared to non-breeding periods. We compared the immune function of sympatric male and female chick-feeding and non-breeding red-capped Calandrella cinerea and rufous-naped larks Mirafra africana in equatorial East Africa. These closely-related species occupy different niches and have different breeding strategies in the same grassland habitat. Red-capped larks prefer areas with short grass or almost bare ground, and breed during low rainfall periods. Rufous-naped larks prefer areas of tall grass and scattered shrubs and breed during high rainfall. We measured the following immune indices: nitric oxide, haptoglobin, agglutination and lysis, and measured total monthly rain, monthly average minimum (T-min) and maximum (T-max) temperatures. Contrary to our predictions, we found no down-regulation of immune function during breeding; breeding birds had higher nitric oxide than non-breeding ones in both species, while the other three immune indices did not differ between breeding phases. Red-capped larks had higher nitric oxide concentrations than Rufous-naped larks, which in turn had higher haptoglobin levels than red-capped larks. T-max was higher during breeding than during non-breeding for red-capped larks only, suggesting potential confounding effect of T-max on the comparison of immune function between breeding and non-breeding birds for this species. Overall, we conclude that in the two year-round breeding equatorial larks, immune function is not down-regulated during breeding
Left ventricular dysfunction in heart failure with preserved ejection fraction-molecular mechanisms and impact on right ventricular function
The current classification of heart failure (HF) based on left ventricular (LV) ejection fraction (EF) identifies a large group of patients with preserved ejection fraction (HFpEF) with significant morbidity and mortality but without prognostic benefit from current HF therapy. Co-morbidities and conditions such as arterial hypertension, diabetes mellitus, chronic kidney disease, adiposity and aging shape the clinical phenotype and contribute to mortality. LV diastolic dysfunction and LV structural remodeling are hallmarks of HFpEF, and are linked to remodeling of the cardiomyocyte and extracellular matrix. Pulmonary hypertension (PH) and right ventricular dysfunction (RVD) are particularly common in HFpEF, and mortality is up to 10-fold higher in HFpEF patients with vs. without RV dysfunction. Here, we review alterations in cardiomyocyte function (i.e., ion homeostasis, sarcomere function and cellular metabolism) associated with diastolic dysfunction and summarize the main underlying cellular pathways. The contribution and interaction of systemic and regional upstream signaling such as chronic inflammation, neurohumoral activation, and NO-cGMP-related pathways are outlined in detail, and their diagnostic and therapeutic potential is discussed in the context of preclinical and clinical studies. In addition, we summarize prevalence and pathomechanisms of RV dysfunction in the context of HFpEF and discuss mechanisms connecting LV and RV dysfunction in HFpEF. Dissecting the molecular mechanisms of LV and RV dysfunction in HFpEF may provide a basis for an improved classification of HFpEF and for therapeutic approaches tailored to the molecular phenotype
- …