10,328 research outputs found

    The identification of continuous, spatiotemporal systems

    Full text link
    We present a method for the identification of continuous, spatiotemporal dynamics from experimental data. We use a model in the form of a partial differential equation and formulate an optimization problem for its estimation from data. The solution is found as a multivariate nonlinear regression problem using the ACE-algorithm. The procedure is successfully applied to data, obtained by simulation of the Swift-Hohenberg equation. There are no restrictions on the dimensionality of the investigated system, allowing for the analysis of high-dimensional chaotic as well as transient dynamics. The demands on the experimental data are discussed as well as the sensitivity of the method towards noise

    A rocket-borne electrostatic analyzer for measurement of energetic particle flux

    Get PDF
    A rocket-borne electrostatic analyzer experiment is described. It is used to measure energetic particle flux (0.9 to 14 keV) in the nighttime midlatitude E region. Energetic particle precipitation is believed to be a significant nighttime ionization source, particularly during times of high geomagnetic activity. The experiment was designed for use in the payload of a Nike Apache sounding rocket. The electrostatic analyzer employs two cylindrical parallel plates subtending a central angle of 90 deg. The voltage waveform supplied to the plates is a series of steps synchronized to the spin of the payload during flight. Both positive and negative voltages are provided, extending the detection capabilities of the instrument to both electrons and protons (and positive ions). The development, construction and operation of the instrument is described together with a preliminary evaluation of its performance in a rocket flight

    Energetic electrons in the midlatitude nighttime E region

    Get PDF
    Nike Apache 14.439 was launched from Wallops Island at 0003 EST on 1 November 1972, a very disturbed night (K sub P = 8). A Geiger counter in the payload detected electrons ( keV) with a maximum flux of 1086 + or -261/sq cm/sec/ster. The height-averaged ionization rate in the upper E region is calculated from the measured electron density profile and has a value of 35 1/cu/cm/sec. The ionization rate can be reconciled with the observed flux of electrons ( 70 2 keV) if the spectrum ( keV) is of the form J ( E) = J sub O exp(-E/E sub O) with E sub O equal to 8.3 keV. The ionization rate on this and other nights is found to be strongly dependent on geomagnetic activity. It is suggested that energetic electrons are the principal source of ionization at midlatitudes in the upper E region near midnight, even under rather quiet geomagnetic conditions

    Multiorbital tunneling ionization of the CO molecule

    Full text link
    We coincidently measure the molecular frame photoelectron angular distribution and the ion sum-momentum distribution of single and double ionization of CO molecules by using circularly and elliptically polarized femtosecond laser pulses, respectively. The orientation dependent ionization rates for various kinetic energy releases allow us to individually identify the ionizations of multiple orbitals, ranging from the highest occupied to the next two lower-lying molecular orbitals for various channels observed in our experiments. Not only the emission of a single electron, but also the sequential tunneling dynamics of two electrons from multiple orbitals are traced step by step. Our results confirm that the shape of the ionizing orbitals determine the strong laser field tunneling ionization in the CO molecule, whereas the linear Stark effect plays a minor role.Comment: This paper has been accepted for publication by Physical Review Letter

    Toward an Understanding of the Tidal Fluid Mechanics Associated with the Genesis Flood

    Get PDF
    Tidal fluid mechanics associated with a global ocean are investigated using numerical analysis and computer simulation. Tidal waves, with their shallow water wave characteristics, are shown to be perfect candidates for the role of sediment transport and deposition associated with the buildup of thick sequences of sedimentary strata. The global ocean in the tidal context is shown to be near resonance which, if present, would augment the load-carrying ability of the tidal waves. Pertinent variables of fluid friction, ocean depth, and bottom relief are studied to ascertain their role in the tidal action in a global ocean

    Inverse Anticipating Synchronization

    Full text link
    We report a new type of chaos synchronization:inverse anticipating synchronization, where a time delay chaotic system can drive another system in such a way that the driven system anticipates the driver by synchronizing with its inverse future state. We extend the concept of inverse anticipating chaos synchronization to cascaded systems. We propose means for the experimental observation of inverse anticipating chaos synchronization in external cavity lasers.Comment: LaTex 6 pages, resubmitted to PR

    Universal Behavior of the Resistance Noise across the Metal-Insulator Transition in Silicon Inversion Layers

    Full text link
    Studies of low-frequency resistance noise show that the glassy freezing of the two-dimensional (2D) electron system in the vicinity of the metal-insulator transition occurs in all Si inversion layers. The size of the metallic glass phase, which separates the 2D metal and the (glassy) insulator, depends strongly on disorder, becoming extremely small in high-mobility samples. The behavior of the second spectrum, an important fourth-order noise statistic, indicates the presence of long-range correlations between fluctuators in the glassy phase, consistent with the hierarchical picture of glassy dynamics.Comment: revtex4; 4+ pages, 5 figure

    Parameter Mismatches and Perfect Anticipating Synchronization in bi-directionally coupled external cavity laser diodes

    Full text link
    We study perfect chaos synchronization between two bi-directionally coupled external cavity semiconductor lasers and demonstrate for the first time that mismatches in laser photon decay rates can explain the experimentally observed anticipating time in synchronization.Comment: Latex 4 page

    Transition from anticipatory to lag synchronization via complete synchronization in time-delay systems

    Get PDF
    The existence of anticipatory, complete and lag synchronization in a single system having two different time-delays, that is feedback delay Ï„1\tau_1 and coupling delay Ï„2\tau_2, is identified. The transition from anticipatory to complete synchronization and from complete to lag synchronization as a function of coupling delay Ï„2\tau_2 with suitable stability condition is discussed. The existence of anticipatory and lag synchronization is characterized both by the minimum of similarity function and the transition from on-off intermittency to periodic structure in laminar phase distribution.Comment: 14 Pages and 12 Figure
    • …
    corecore